MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucssi Structured version   Visualization version   GIF version

Theorem onsucssi 7830
Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
onssi.1 𝐴 ∈ On
onsucssi.2 𝐵 ∈ On
Assertion
Ref Expression
onsucssi (𝐴𝐵 ↔ suc 𝐴𝐵)

Proof of Theorem onsucssi
StepHypRef Expression
1 onssi.1 . 2 𝐴 ∈ On
2 onsucssi.2 . . 3 𝐵 ∈ On
32onordi 6476 . 2 Ord 𝐵
4 ordelsuc 7808 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))
51, 3, 4mp2an 691 1 (𝐴𝐵 ↔ suc 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2107  wss 3949  Ord word 6364  Oncon0 6365  suc csuc 6367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-suc 6371
This theorem is referenced by:  omopthlem1  8658  rankval4  9862  rankc1  9865  rankc2  9866  rankxplim  9874  rankxplim3  9876  cuteq1  27334  onsucsuccmpi  35328
  Copyright terms: Public domain W3C validator