![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsucssi | Structured version Visualization version GIF version |
Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.) |
Ref | Expression |
---|---|
onssi.1 | ⊢ 𝐴 ∈ On |
onsucssi.2 | ⊢ 𝐵 ∈ On |
Ref | Expression |
---|---|
onsucssi | ⊢ (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssi.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | onsucssi.2 | . . 3 ⊢ 𝐵 ∈ On | |
3 | 2 | onordi 6497 | . 2 ⊢ Ord 𝐵 |
4 | ordelsuc 7840 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) | |
5 | 1, 3, 4 | mp2an 692 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2106 ⊆ wss 3963 Ord word 6385 Oncon0 6386 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-suc 6392 |
This theorem is referenced by: omopthlem1 8696 rankval4 9905 rankc1 9908 rankc2 9909 rankxplim 9917 rankxplim3 9919 cuteq1 27893 onsucsuccmpi 36426 |
Copyright terms: Public domain | W3C validator |