Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankc1 | Structured version Visualization version GIF version |
Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
rankr1b.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rankc1 | ⊢ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ (rank‘∪ 𝐴) ↔ (rank‘𝐴) = (rank‘∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankr1b.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | rankuniss 9368 | . . 3 ⊢ (rank‘∪ 𝐴) ⊆ (rank‘𝐴) |
3 | 2 | biantru 533 | . 2 ⊢ ((rank‘𝐴) ⊆ (rank‘∪ 𝐴) ↔ ((rank‘𝐴) ⊆ (rank‘∪ 𝐴) ∧ (rank‘∪ 𝐴) ⊆ (rank‘𝐴))) |
4 | iunss 4931 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ (rank‘∪ 𝐴) ↔ ∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ (rank‘∪ 𝐴)) | |
5 | 1 | rankval4 9369 | . . . 4 ⊢ (rank‘𝐴) = ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) |
6 | 5 | sseq1i 3905 | . . 3 ⊢ ((rank‘𝐴) ⊆ (rank‘∪ 𝐴) ↔ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ (rank‘∪ 𝐴)) |
7 | rankon 9297 | . . . . 5 ⊢ (rank‘𝑥) ∈ On | |
8 | rankon 9297 | . . . . 5 ⊢ (rank‘∪ 𝐴) ∈ On | |
9 | 7, 8 | onsucssi 7575 | . . . 4 ⊢ ((rank‘𝑥) ∈ (rank‘∪ 𝐴) ↔ suc (rank‘𝑥) ⊆ (rank‘∪ 𝐴)) |
10 | 9 | ralbii 3080 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ (rank‘∪ 𝐴) ↔ ∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ (rank‘∪ 𝐴)) |
11 | 4, 6, 10 | 3bitr4ri 307 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ (rank‘∪ 𝐴) ↔ (rank‘𝐴) ⊆ (rank‘∪ 𝐴)) |
12 | eqss 3892 | . 2 ⊢ ((rank‘𝐴) = (rank‘∪ 𝐴) ↔ ((rank‘𝐴) ⊆ (rank‘∪ 𝐴) ∧ (rank‘∪ 𝐴) ⊆ (rank‘𝐴))) | |
13 | 3, 11, 12 | 3bitr4i 306 | 1 ⊢ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ (rank‘∪ 𝐴) ↔ (rank‘𝐴) = (rank‘∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 Vcvv 3398 ⊆ wss 3843 ∪ cuni 4796 ∪ ciun 4881 suc csuc 6174 ‘cfv 6339 rankcrnk 9265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-reg 9129 ax-inf2 9177 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-om 7600 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-r1 9266 df-rank 9267 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |