![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankc1 | Structured version Visualization version GIF version |
Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
rankr1b.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rankc1 | ⊢ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ (rank‘∪ 𝐴) ↔ (rank‘𝐴) = (rank‘∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankr1b.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | rankuniss 9863 | . . 3 ⊢ (rank‘∪ 𝐴) ⊆ (rank‘𝐴) |
3 | 2 | biantru 528 | . 2 ⊢ ((rank‘𝐴) ⊆ (rank‘∪ 𝐴) ↔ ((rank‘𝐴) ⊆ (rank‘∪ 𝐴) ∧ (rank‘∪ 𝐴) ⊆ (rank‘𝐴))) |
4 | iunss 5047 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ (rank‘∪ 𝐴) ↔ ∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ (rank‘∪ 𝐴)) | |
5 | 1 | rankval4 9864 | . . . 4 ⊢ (rank‘𝐴) = ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) |
6 | 5 | sseq1i 4009 | . . 3 ⊢ ((rank‘𝐴) ⊆ (rank‘∪ 𝐴) ↔ ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ (rank‘∪ 𝐴)) |
7 | rankon 9792 | . . . . 5 ⊢ (rank‘𝑥) ∈ On | |
8 | rankon 9792 | . . . . 5 ⊢ (rank‘∪ 𝐴) ∈ On | |
9 | 7, 8 | onsucssi 7832 | . . . 4 ⊢ ((rank‘𝑥) ∈ (rank‘∪ 𝐴) ↔ suc (rank‘𝑥) ⊆ (rank‘∪ 𝐴)) |
10 | 9 | ralbii 3091 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ (rank‘∪ 𝐴) ↔ ∀𝑥 ∈ 𝐴 suc (rank‘𝑥) ⊆ (rank‘∪ 𝐴)) |
11 | 4, 6, 10 | 3bitr4ri 303 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ (rank‘∪ 𝐴) ↔ (rank‘𝐴) ⊆ (rank‘∪ 𝐴)) |
12 | eqss 3996 | . 2 ⊢ ((rank‘𝐴) = (rank‘∪ 𝐴) ↔ ((rank‘𝐴) ⊆ (rank‘∪ 𝐴) ∧ (rank‘∪ 𝐴) ⊆ (rank‘𝐴))) | |
13 | 3, 11, 12 | 3bitr4i 302 | 1 ⊢ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ (rank‘∪ 𝐴) ↔ (rank‘𝐴) = (rank‘∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 Vcvv 3472 ⊆ wss 3947 ∪ cuni 4907 ∪ ciun 4996 suc csuc 6365 ‘cfv 6542 rankcrnk 9760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-reg 9589 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-r1 9761 df-rank 9762 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |