| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankc2 | Structured version Visualization version GIF version | ||
| Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006.) |
| Ref | Expression |
|---|---|
| rankr1b.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rankc2 | ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) = suc (rank‘∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuni 4905 | . . . . 5 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 2 | rankr1b.1 | . . . . . . . 8 ⊢ 𝐴 ∈ V | |
| 3 | 2 | uniex 7697 | . . . . . . 7 ⊢ ∪ 𝐴 ∈ V |
| 4 | 3 | pwex 5330 | . . . . . 6 ⊢ 𝒫 ∪ 𝐴 ∈ V |
| 5 | 4 | rankss 9778 | . . . . 5 ⊢ (𝐴 ⊆ 𝒫 ∪ 𝐴 → (rank‘𝐴) ⊆ (rank‘𝒫 ∪ 𝐴)) |
| 6 | 1, 5 | ax-mp 5 | . . . 4 ⊢ (rank‘𝐴) ⊆ (rank‘𝒫 ∪ 𝐴) |
| 7 | 3 | rankpw 9772 | . . . 4 ⊢ (rank‘𝒫 ∪ 𝐴) = suc (rank‘∪ 𝐴) |
| 8 | 6, 7 | sseqtri 3992 | . . 3 ⊢ (rank‘𝐴) ⊆ suc (rank‘∪ 𝐴) |
| 9 | 8 | a1i 11 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) ⊆ suc (rank‘∪ 𝐴)) |
| 10 | 2 | rankel 9768 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)) |
| 11 | eleq1 2816 | . . . . 5 ⊢ ((rank‘𝑥) = (rank‘∪ 𝐴) → ((rank‘𝑥) ∈ (rank‘𝐴) ↔ (rank‘∪ 𝐴) ∈ (rank‘𝐴))) | |
| 12 | 10, 11 | syl5ibcom 245 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘∪ 𝐴) ∈ (rank‘𝐴))) |
| 13 | 12 | rexlimiv 3127 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘∪ 𝐴) ∈ (rank‘𝐴)) |
| 14 | rankon 9724 | . . . 4 ⊢ (rank‘∪ 𝐴) ∈ On | |
| 15 | rankon 9724 | . . . 4 ⊢ (rank‘𝐴) ∈ On | |
| 16 | 14, 15 | onsucssi 7797 | . . 3 ⊢ ((rank‘∪ 𝐴) ∈ (rank‘𝐴) ↔ suc (rank‘∪ 𝐴) ⊆ (rank‘𝐴)) |
| 17 | 13, 16 | sylib 218 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → suc (rank‘∪ 𝐴) ⊆ (rank‘𝐴)) |
| 18 | 9, 17 | eqssd 3961 | 1 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) = suc (rank‘∪ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 suc csuc 6322 ‘cfv 6499 rankcrnk 9692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-reg 9521 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-r1 9693 df-rank 9694 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |