| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankc2 | Structured version Visualization version GIF version | ||
| Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006.) |
| Ref | Expression |
|---|---|
| rankr1b.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rankc2 | ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) = suc (rank‘∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuni 4917 | . . . . 5 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 2 | rankr1b.1 | . . . . . . . 8 ⊢ 𝐴 ∈ V | |
| 3 | 2 | uniex 7724 | . . . . . . 7 ⊢ ∪ 𝐴 ∈ V |
| 4 | 3 | pwex 5343 | . . . . . 6 ⊢ 𝒫 ∪ 𝐴 ∈ V |
| 5 | 4 | rankss 9820 | . . . . 5 ⊢ (𝐴 ⊆ 𝒫 ∪ 𝐴 → (rank‘𝐴) ⊆ (rank‘𝒫 ∪ 𝐴)) |
| 6 | 1, 5 | ax-mp 5 | . . . 4 ⊢ (rank‘𝐴) ⊆ (rank‘𝒫 ∪ 𝐴) |
| 7 | 3 | rankpw 9814 | . . . 4 ⊢ (rank‘𝒫 ∪ 𝐴) = suc (rank‘∪ 𝐴) |
| 8 | 6, 7 | sseqtri 4003 | . . 3 ⊢ (rank‘𝐴) ⊆ suc (rank‘∪ 𝐴) |
| 9 | 8 | a1i 11 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) ⊆ suc (rank‘∪ 𝐴)) |
| 10 | 2 | rankel 9810 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)) |
| 11 | eleq1 2817 | . . . . 5 ⊢ ((rank‘𝑥) = (rank‘∪ 𝐴) → ((rank‘𝑥) ∈ (rank‘𝐴) ↔ (rank‘∪ 𝐴) ∈ (rank‘𝐴))) | |
| 12 | 10, 11 | syl5ibcom 245 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘∪ 𝐴) ∈ (rank‘𝐴))) |
| 13 | 12 | rexlimiv 3129 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘∪ 𝐴) ∈ (rank‘𝐴)) |
| 14 | rankon 9766 | . . . 4 ⊢ (rank‘∪ 𝐴) ∈ On | |
| 15 | rankon 9766 | . . . 4 ⊢ (rank‘𝐴) ∈ On | |
| 16 | 14, 15 | onsucssi 7825 | . . 3 ⊢ ((rank‘∪ 𝐴) ∈ (rank‘𝐴) ↔ suc (rank‘∪ 𝐴) ⊆ (rank‘𝐴)) |
| 17 | 13, 16 | sylib 218 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → suc (rank‘∪ 𝐴) ⊆ (rank‘𝐴)) |
| 18 | 9, 17 | eqssd 3972 | 1 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) = suc (rank‘∪ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3055 Vcvv 3455 ⊆ wss 3922 𝒫 cpw 4571 ∪ cuni 4879 suc csuc 6342 ‘cfv 6519 rankcrnk 9734 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-reg 9563 ax-inf2 9612 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-r1 9735 df-rank 9736 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |