| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankc2 | Structured version Visualization version GIF version | ||
| Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006.) |
| Ref | Expression |
|---|---|
| rankr1b.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rankc2 | ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) = suc (rank‘∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuni 4927 | . . . . 5 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 2 | rankr1b.1 | . . . . . . . 8 ⊢ 𝐴 ∈ V | |
| 3 | 2 | uniex 7744 | . . . . . . 7 ⊢ ∪ 𝐴 ∈ V |
| 4 | 3 | pwex 5362 | . . . . . 6 ⊢ 𝒫 ∪ 𝐴 ∈ V |
| 5 | 4 | rankss 9872 | . . . . 5 ⊢ (𝐴 ⊆ 𝒫 ∪ 𝐴 → (rank‘𝐴) ⊆ (rank‘𝒫 ∪ 𝐴)) |
| 6 | 1, 5 | ax-mp 5 | . . . 4 ⊢ (rank‘𝐴) ⊆ (rank‘𝒫 ∪ 𝐴) |
| 7 | 3 | rankpw 9866 | . . . 4 ⊢ (rank‘𝒫 ∪ 𝐴) = suc (rank‘∪ 𝐴) |
| 8 | 6, 7 | sseqtri 4014 | . . 3 ⊢ (rank‘𝐴) ⊆ suc (rank‘∪ 𝐴) |
| 9 | 8 | a1i 11 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) ⊆ suc (rank‘∪ 𝐴)) |
| 10 | 2 | rankel 9862 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)) |
| 11 | eleq1 2821 | . . . . 5 ⊢ ((rank‘𝑥) = (rank‘∪ 𝐴) → ((rank‘𝑥) ∈ (rank‘𝐴) ↔ (rank‘∪ 𝐴) ∈ (rank‘𝐴))) | |
| 12 | 10, 11 | syl5ibcom 245 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘∪ 𝐴) ∈ (rank‘𝐴))) |
| 13 | 12 | rexlimiv 3135 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘∪ 𝐴) ∈ (rank‘𝐴)) |
| 14 | rankon 9818 | . . . 4 ⊢ (rank‘∪ 𝐴) ∈ On | |
| 15 | rankon 9818 | . . . 4 ⊢ (rank‘𝐴) ∈ On | |
| 16 | 14, 15 | onsucssi 7845 | . . 3 ⊢ ((rank‘∪ 𝐴) ∈ (rank‘𝐴) ↔ suc (rank‘∪ 𝐴) ⊆ (rank‘𝐴)) |
| 17 | 13, 16 | sylib 218 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → suc (rank‘∪ 𝐴) ⊆ (rank‘𝐴)) |
| 18 | 9, 17 | eqssd 3983 | 1 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) = suc (rank‘∪ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 Vcvv 3464 ⊆ wss 3933 𝒫 cpw 4582 ∪ cuni 4889 suc csuc 6367 ‘cfv 6542 rankcrnk 9786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-reg 9615 ax-inf2 9664 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-r1 9787 df-rank 9788 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |