MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankc2 Structured version   Visualization version   GIF version

Theorem rankc2 9942
Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006.)
Hypothesis
Ref Expression
rankr1b.1 𝐴 ∈ V
Assertion
Ref Expression
rankc2 (∃𝑥𝐴 (rank‘𝑥) = (rank‘ 𝐴) → (rank‘𝐴) = suc (rank‘ 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rankc2
StepHypRef Expression
1 pwuni 4969 . . . . 5 𝐴 ⊆ 𝒫 𝐴
2 rankr1b.1 . . . . . . . 8 𝐴 ∈ V
32uniex 7778 . . . . . . 7 𝐴 ∈ V
43pwex 5398 . . . . . 6 𝒫 𝐴 ∈ V
54rankss 9920 . . . . 5 (𝐴 ⊆ 𝒫 𝐴 → (rank‘𝐴) ⊆ (rank‘𝒫 𝐴))
61, 5ax-mp 5 . . . 4 (rank‘𝐴) ⊆ (rank‘𝒫 𝐴)
73rankpw 9914 . . . 4 (rank‘𝒫 𝐴) = suc (rank‘ 𝐴)
86, 7sseqtri 4045 . . 3 (rank‘𝐴) ⊆ suc (rank‘ 𝐴)
98a1i 11 . 2 (∃𝑥𝐴 (rank‘𝑥) = (rank‘ 𝐴) → (rank‘𝐴) ⊆ suc (rank‘ 𝐴))
102rankel 9910 . . . . 5 (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴))
11 eleq1 2832 . . . . 5 ((rank‘𝑥) = (rank‘ 𝐴) → ((rank‘𝑥) ∈ (rank‘𝐴) ↔ (rank‘ 𝐴) ∈ (rank‘𝐴)))
1210, 11syl5ibcom 245 . . . 4 (𝑥𝐴 → ((rank‘𝑥) = (rank‘ 𝐴) → (rank‘ 𝐴) ∈ (rank‘𝐴)))
1312rexlimiv 3154 . . 3 (∃𝑥𝐴 (rank‘𝑥) = (rank‘ 𝐴) → (rank‘ 𝐴) ∈ (rank‘𝐴))
14 rankon 9866 . . . 4 (rank‘ 𝐴) ∈ On
15 rankon 9866 . . . 4 (rank‘𝐴) ∈ On
1614, 15onsucssi 7880 . . 3 ((rank‘ 𝐴) ∈ (rank‘𝐴) ↔ suc (rank‘ 𝐴) ⊆ (rank‘𝐴))
1713, 16sylib 218 . 2 (∃𝑥𝐴 (rank‘𝑥) = (rank‘ 𝐴) → suc (rank‘ 𝐴) ⊆ (rank‘𝐴))
189, 17eqssd 4026 1 (∃𝑥𝐴 (rank‘𝑥) = (rank‘ 𝐴) → (rank‘𝐴) = suc (rank‘ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  wss 3976  𝒫 cpw 4622   cuni 4931  suc csuc 6399  cfv 6575  rankcrnk 9834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-reg 9663  ax-inf2 9712
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-r1 9835  df-rank 9836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator