![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankc2 | Structured version Visualization version GIF version |
Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
rankr1b.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rankc2 | ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) = suc (rank‘∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni 4950 | . . . . 5 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
2 | rankr1b.1 | . . . . . . . 8 ⊢ 𝐴 ∈ V | |
3 | 2 | uniex 7735 | . . . . . . 7 ⊢ ∪ 𝐴 ∈ V |
4 | 3 | pwex 5379 | . . . . . 6 ⊢ 𝒫 ∪ 𝐴 ∈ V |
5 | 4 | rankss 9848 | . . . . 5 ⊢ (𝐴 ⊆ 𝒫 ∪ 𝐴 → (rank‘𝐴) ⊆ (rank‘𝒫 ∪ 𝐴)) |
6 | 1, 5 | ax-mp 5 | . . . 4 ⊢ (rank‘𝐴) ⊆ (rank‘𝒫 ∪ 𝐴) |
7 | 3 | rankpw 9842 | . . . 4 ⊢ (rank‘𝒫 ∪ 𝐴) = suc (rank‘∪ 𝐴) |
8 | 6, 7 | sseqtri 4019 | . . 3 ⊢ (rank‘𝐴) ⊆ suc (rank‘∪ 𝐴) |
9 | 8 | a1i 11 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) ⊆ suc (rank‘∪ 𝐴)) |
10 | 2 | rankel 9838 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)) |
11 | eleq1 2819 | . . . . 5 ⊢ ((rank‘𝑥) = (rank‘∪ 𝐴) → ((rank‘𝑥) ∈ (rank‘𝐴) ↔ (rank‘∪ 𝐴) ∈ (rank‘𝐴))) | |
12 | 10, 11 | syl5ibcom 244 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘∪ 𝐴) ∈ (rank‘𝐴))) |
13 | 12 | rexlimiv 3146 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘∪ 𝐴) ∈ (rank‘𝐴)) |
14 | rankon 9794 | . . . 4 ⊢ (rank‘∪ 𝐴) ∈ On | |
15 | rankon 9794 | . . . 4 ⊢ (rank‘𝐴) ∈ On | |
16 | 14, 15 | onsucssi 7834 | . . 3 ⊢ ((rank‘∪ 𝐴) ∈ (rank‘𝐴) ↔ suc (rank‘∪ 𝐴) ⊆ (rank‘𝐴)) |
17 | 13, 16 | sylib 217 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → suc (rank‘∪ 𝐴) ⊆ (rank‘𝐴)) |
18 | 9, 17 | eqssd 4000 | 1 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) = suc (rank‘∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∃wrex 3068 Vcvv 3472 ⊆ wss 3949 𝒫 cpw 4603 ∪ cuni 4909 suc csuc 6367 ‘cfv 6544 rankcrnk 9762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-reg 9591 ax-inf2 9640 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-r1 9763 df-rank 9764 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |