Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankc2 | Structured version Visualization version GIF version |
Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
rankr1b.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rankc2 | ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) = suc (rank‘∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni 4875 | . . . . 5 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
2 | rankr1b.1 | . . . . . . . 8 ⊢ 𝐴 ∈ V | |
3 | 2 | uniex 7572 | . . . . . . 7 ⊢ ∪ 𝐴 ∈ V |
4 | 3 | pwex 5298 | . . . . . 6 ⊢ 𝒫 ∪ 𝐴 ∈ V |
5 | 4 | rankss 9538 | . . . . 5 ⊢ (𝐴 ⊆ 𝒫 ∪ 𝐴 → (rank‘𝐴) ⊆ (rank‘𝒫 ∪ 𝐴)) |
6 | 1, 5 | ax-mp 5 | . . . 4 ⊢ (rank‘𝐴) ⊆ (rank‘𝒫 ∪ 𝐴) |
7 | 3 | rankpw 9532 | . . . 4 ⊢ (rank‘𝒫 ∪ 𝐴) = suc (rank‘∪ 𝐴) |
8 | 6, 7 | sseqtri 3953 | . . 3 ⊢ (rank‘𝐴) ⊆ suc (rank‘∪ 𝐴) |
9 | 8 | a1i 11 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) ⊆ suc (rank‘∪ 𝐴)) |
10 | 2 | rankel 9528 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)) |
11 | eleq1 2826 | . . . . 5 ⊢ ((rank‘𝑥) = (rank‘∪ 𝐴) → ((rank‘𝑥) ∈ (rank‘𝐴) ↔ (rank‘∪ 𝐴) ∈ (rank‘𝐴))) | |
12 | 10, 11 | syl5ibcom 244 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘∪ 𝐴) ∈ (rank‘𝐴))) |
13 | 12 | rexlimiv 3208 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘∪ 𝐴) ∈ (rank‘𝐴)) |
14 | rankon 9484 | . . . 4 ⊢ (rank‘∪ 𝐴) ∈ On | |
15 | rankon 9484 | . . . 4 ⊢ (rank‘𝐴) ∈ On | |
16 | 14, 15 | onsucssi 7663 | . . 3 ⊢ ((rank‘∪ 𝐴) ∈ (rank‘𝐴) ↔ suc (rank‘∪ 𝐴) ⊆ (rank‘𝐴)) |
17 | 13, 16 | sylib 217 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → suc (rank‘∪ 𝐴) ⊆ (rank‘𝐴)) |
18 | 9, 17 | eqssd 3934 | 1 ⊢ (∃𝑥 ∈ 𝐴 (rank‘𝑥) = (rank‘∪ 𝐴) → (rank‘𝐴) = suc (rank‘∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 suc csuc 6253 ‘cfv 6418 rankcrnk 9452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-rank 9454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |