Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgsucuni Structured version   Visualization version   GIF version

Theorem rdgsucuni 37352
Description: If an ordinal number has a predecessor, the value of the recursive definition generator at that number in terms of its predecessor. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
rdgsucuni ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (rec(𝐹, 𝐼)‘𝐵) = (𝐹‘(rec(𝐹, 𝐼)‘ 𝐵)))

Proof of Theorem rdgsucuni
StepHypRef Expression
1 onsucuni3 37350 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc 𝐵)
21fveq2d 6911 . 2 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (rec(𝐹, 𝐼)‘𝐵) = (rec(𝐹, 𝐼)‘suc 𝐵))
3 onuni 7808 . . . 4 (𝐵 ∈ On → 𝐵 ∈ On)
433ad2ant1 1132 . . 3 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 ∈ On)
5 rdgsuc 8463 . . 3 ( 𝐵 ∈ On → (rec(𝐹, 𝐼)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐼)‘ 𝐵)))
64, 5syl 17 . 2 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (rec(𝐹, 𝐼)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐼)‘ 𝐵)))
72, 6eqtrd 2775 1 ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (rec(𝐹, 𝐼)‘𝐵) = (𝐹‘(rec(𝐹, 𝐼)‘ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1537  wcel 2106  wne 2938  c0 4339   cuni 4912  Oncon0 6386  Lim wlim 6387  suc csuc 6388  cfv 6563  reccrdg 8448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449
This theorem is referenced by:  finxp1o  37375  finxpreclem4  37377
  Copyright terms: Public domain W3C validator