![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rdgsucuni | Structured version Visualization version GIF version |
Description: If an ordinal number has a predecessor, the value of the recursive definition generator at that number in terms of its predecessor. (Contributed by ML, 17-Oct-2020.) |
Ref | Expression |
---|---|
rdgsucuni | ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (rec(𝐹, 𝐼)‘𝐵) = (𝐹‘(rec(𝐹, 𝐼)‘∪ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsucuni3 36739 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → 𝐵 = suc ∪ 𝐵) | |
2 | 1 | fveq2d 6886 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (rec(𝐹, 𝐼)‘𝐵) = (rec(𝐹, 𝐼)‘suc ∪ 𝐵)) |
3 | onuni 7770 | . . . 4 ⊢ (𝐵 ∈ On → ∪ 𝐵 ∈ On) | |
4 | 3 | 3ad2ant1 1130 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → ∪ 𝐵 ∈ On) |
5 | rdgsuc 8420 | . . 3 ⊢ (∪ 𝐵 ∈ On → (rec(𝐹, 𝐼)‘suc ∪ 𝐵) = (𝐹‘(rec(𝐹, 𝐼)‘∪ 𝐵))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (rec(𝐹, 𝐼)‘suc ∪ 𝐵) = (𝐹‘(rec(𝐹, 𝐼)‘∪ 𝐵))) |
7 | 2, 6 | eqtrd 2764 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐵 ≠ ∅ ∧ ¬ Lim 𝐵) → (rec(𝐹, 𝐼)‘𝐵) = (𝐹‘(rec(𝐹, 𝐼)‘∪ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∅c0 4315 ∪ cuni 4900 Oncon0 6355 Lim wlim 6356 suc csuc 6357 ‘cfv 6534 reccrdg 8405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 |
This theorem is referenced by: finxp1o 36764 finxpreclem4 36766 |
Copyright terms: Public domain | W3C validator |