Proof of Theorem onsucunitp
Step | Hyp | Ref
| Expression |
1 | | onun2 6472 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
2 | | onsucunipr 42425 |
. . . 4
⊢ (((𝐴 ∪ 𝐵) ∈ On ∧ 𝐶 ∈ On) → suc ∪ {(𝐴
∪ 𝐵), 𝐶} = ∪ {suc (𝐴 ∪ 𝐵), suc 𝐶}) |
3 | 1, 2 | sylan 579 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → suc ∪ {(𝐴
∪ 𝐵), 𝐶} = ∪ {suc (𝐴 ∪ 𝐵), suc 𝐶}) |
4 | | uniprg 4925 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) |
5 | 4 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) |
6 | | unisng 4929 |
. . . . . . 7
⊢ (𝐶 ∈ On → ∪ {𝐶}
= 𝐶) |
7 | 6 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ∪ {𝐶}
= 𝐶) |
8 | 5, 7 | uneq12d 4164 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (∪ {𝐴,
𝐵} ∪ ∪ {𝐶})
= ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
9 | | df-tp 4633 |
. . . . . . . 8
⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
10 | 9 | unieqi 4921 |
. . . . . . 7
⊢ ∪ {𝐴,
𝐵, 𝐶} = ∪ ({𝐴, 𝐵} ∪ {𝐶}) |
11 | | uniun 4934 |
. . . . . . 7
⊢ ∪ ({𝐴,
𝐵} ∪ {𝐶}) = (∪ {𝐴, 𝐵} ∪ ∪ {𝐶}) |
12 | 10, 11 | eqtri 2759 |
. . . . . 6
⊢ ∪ {𝐴,
𝐵, 𝐶} = (∪ {𝐴, 𝐵} ∪ ∪ {𝐶}) |
13 | 12 | a1i 11 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ∪ {𝐴,
𝐵, 𝐶} = (∪ {𝐴, 𝐵} ∪ ∪ {𝐶})) |
14 | | uniprg 4925 |
. . . . . 6
⊢ (((𝐴 ∪ 𝐵) ∈ On ∧ 𝐶 ∈ On) → ∪ {(𝐴
∪ 𝐵), 𝐶} = ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
15 | 1, 14 | sylan 579 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ∪ {(𝐴
∪ 𝐵), 𝐶} = ((𝐴 ∪ 𝐵) ∪ 𝐶)) |
16 | 8, 13, 15 | 3eqtr4d 2781 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ∪ {𝐴,
𝐵, 𝐶} = ∪ {(𝐴 ∪ 𝐵), 𝐶}) |
17 | | suceq 6430 |
. . . 4
⊢ (∪ {𝐴,
𝐵, 𝐶} = ∪ {(𝐴 ∪ 𝐵), 𝐶} → suc ∪
{𝐴, 𝐵, 𝐶} = suc ∪ {(𝐴 ∪ 𝐵), 𝐶}) |
18 | 16, 17 | syl 17 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → suc ∪ {𝐴,
𝐵, 𝐶} = suc ∪ {(𝐴 ∪ 𝐵), 𝐶}) |
19 | | df-tp 4633 |
. . . . . 6
⊢ {suc
𝐴, suc 𝐵, suc 𝐶} = ({suc 𝐴, suc 𝐵} ∪ {suc 𝐶}) |
20 | 19 | unieqi 4921 |
. . . . 5
⊢ ∪ {suc 𝐴, suc 𝐵, suc 𝐶} = ∪ ({suc 𝐴, suc 𝐵} ∪ {suc 𝐶}) |
21 | | uniun 4934 |
. . . . 5
⊢ ∪ ({suc 𝐴, suc 𝐵} ∪ {suc 𝐶}) = (∪ {suc
𝐴, suc 𝐵} ∪ ∪ {suc
𝐶}) |
22 | 20, 21 | eqtri 2759 |
. . . 4
⊢ ∪ {suc 𝐴, suc 𝐵, suc 𝐶} = (∪ {suc 𝐴, suc 𝐵} ∪ ∪ {suc
𝐶}) |
23 | | onsuc 7803 |
. . . . . . 7
⊢ ((𝐴 ∪ 𝐵) ∈ On → suc (𝐴 ∪ 𝐵) ∈ On) |
24 | 1, 23 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc (𝐴 ∪ 𝐵) ∈ On) |
25 | | onsuc 7803 |
. . . . . 6
⊢ (𝐶 ∈ On → suc 𝐶 ∈ On) |
26 | | uniprg 4925 |
. . . . . 6
⊢ ((suc
(𝐴 ∪ 𝐵) ∈ On ∧ suc 𝐶 ∈ On) → ∪ {suc (𝐴 ∪ 𝐵), suc 𝐶} = (suc (𝐴 ∪ 𝐵) ∪ suc 𝐶)) |
27 | 24, 25, 26 | syl2an 595 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ∪ {suc (𝐴 ∪ 𝐵), suc 𝐶} = (suc (𝐴 ∪ 𝐵) ∪ suc 𝐶)) |
28 | | suceq 6430 |
. . . . . . . . 9
⊢ (∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵) → suc ∪
{𝐴, 𝐵} = suc (𝐴 ∪ 𝐵)) |
29 | 4, 28 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc ∪ {𝐴,
𝐵} = suc (𝐴 ∪ 𝐵)) |
30 | | onsucunipr 42425 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc ∪ {𝐴,
𝐵} = ∪ {suc 𝐴, suc 𝐵}) |
31 | 29, 30 | eqtr3d 2773 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc (𝐴 ∪ 𝐵) = ∪ {suc 𝐴, suc 𝐵}) |
32 | 31 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → suc (𝐴 ∪ 𝐵) = ∪ {suc 𝐴, suc 𝐵}) |
33 | | unisng 4929 |
. . . . . . . . 9
⊢ (suc
𝐶 ∈ On → ∪ {suc 𝐶} = suc 𝐶) |
34 | 25, 33 | syl 17 |
. . . . . . . 8
⊢ (𝐶 ∈ On → ∪ {suc 𝐶} = suc 𝐶) |
35 | 34 | eqcomd 2737 |
. . . . . . 7
⊢ (𝐶 ∈ On → suc 𝐶 = ∪
{suc 𝐶}) |
36 | 35 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → suc 𝐶 = ∪
{suc 𝐶}) |
37 | 32, 36 | uneq12d 4164 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → (suc (𝐴 ∪ 𝐵) ∪ suc 𝐶) = (∪ {suc 𝐴, suc 𝐵} ∪ ∪ {suc
𝐶})) |
38 | 27, 37 | eqtrd 2771 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ∪ {suc (𝐴 ∪ 𝐵), suc 𝐶} = (∪ {suc 𝐴, suc 𝐵} ∪ ∪ {suc
𝐶})) |
39 | 22, 38 | eqtr4id 2790 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ∪ {suc 𝐴, suc 𝐵, suc 𝐶} = ∪ {suc (𝐴 ∪ 𝐵), suc 𝐶}) |
40 | 3, 18, 39 | 3eqtr4d 2781 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → suc ∪ {𝐴,
𝐵, 𝐶} = ∪ {suc 𝐴, suc 𝐵, suc 𝐶}) |
41 | 40 | 3impa 1109 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → suc ∪ {𝐴,
𝐵, 𝐶} = ∪ {suc 𝐴, suc 𝐵, suc 𝐶}) |