MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupinfsep Structured version   Visualization version   GIF version

Theorem nosupinfsep 27677
Description: Given two sets of surreals, a surreal 𝑊 separates them iff its restriction to the maximum of dom 𝑆 and dom 𝑇 separates them. Corollary 4.4 of [Lipparini] p. 7. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
nosupinfsep.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
nosupinfsep.2 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupinfsep (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏)))
Distinct variable groups:   𝐴,𝑎,𝑔,𝑢,𝑣,𝑥,𝑦   𝑊,𝑎,𝑥   𝑆,𝑎   𝑇,𝑏   𝑊,𝑏,𝑔   𝑆,𝑏,𝑔,𝑥   𝑢,𝐵,𝑦   𝑇,𝑎,𝑔,𝑥   𝐵,𝑏,𝑔,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑏)   𝐵(𝑎)   𝑆(𝑦,𝑣,𝑢)   𝑇(𝑦,𝑣,𝑢)   𝑊(𝑦,𝑣,𝑢)

Proof of Theorem nosupinfsep
StepHypRef Expression
1 ssun1 4137 . . . . . . . 8 dom 𝑆 ⊆ (dom 𝑆 ∪ dom 𝑇)
2 resabs1 5966 . . . . . . . 8 (dom 𝑆 ⊆ (dom 𝑆 ∪ dom 𝑇) → ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) = (𝑊 ↾ dom 𝑆))
31, 2ax-mp 5 . . . . . . 7 ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) = (𝑊 ↾ dom 𝑆)
43breq1i 5109 . . . . . 6 (((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ↔ (𝑊 ↾ dom 𝑆) <s 𝑆)
54notbii 320 . . . . 5 (¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ↔ ¬ (𝑊 ↾ dom 𝑆) <s 𝑆)
6 ssun2 4138 . . . . . . . 8 dom 𝑇 ⊆ (dom 𝑆 ∪ dom 𝑇)
7 resabs1 5966 . . . . . . . 8 (dom 𝑇 ⊆ (dom 𝑆 ∪ dom 𝑇) → ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇) = (𝑊 ↾ dom 𝑇))
86, 7ax-mp 5 . . . . . . 7 ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇) = (𝑊 ↾ dom 𝑇)
98breq2i 5110 . . . . . 6 (𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇) ↔ 𝑇 <s (𝑊 ↾ dom 𝑇))
109notbii 320 . . . . 5 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇) ↔ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))
115, 10anbi12i 628 . . . 4 ((¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇)) ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)))
1211bicomi 224 . . 3 ((¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)) ↔ (¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇)))
1312a1i 11 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)) ↔ (¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇))))
14 simp1l 1198 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝐴 No )
15 simp1r 1199 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝐴 ∈ V)
16 simp3 1138 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝑊 No )
17 nosupinfsep.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1817nosupbnd2 27661 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝑊 No ) → (∀𝑎𝐴 𝑎 <s 𝑊 ↔ ¬ (𝑊 ↾ dom 𝑆) <s 𝑆))
1914, 15, 16, 18syl3anc 1373 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (∀𝑎𝐴 𝑎 <s 𝑊 ↔ ¬ (𝑊 ↾ dom 𝑆) <s 𝑆))
20 simp2l 1200 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝐵 No )
21 simp2r 1201 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝐵 ∈ V)
22 nosupinfsep.2 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2322noinfbnd2 27676 . . . 4 ((𝐵 No 𝐵 ∈ V ∧ 𝑊 No ) → (∀𝑏𝐵 𝑊 <s 𝑏 ↔ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)))
2420, 21, 16, 23syl3anc 1373 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (∀𝑏𝐵 𝑊 <s 𝑏 ↔ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)))
2519, 24anbi12d 632 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏) ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))))
2617nosupno 27648 . . . . . . . 8 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
27 nodmon 27595 . . . . . . . 8 (𝑆 No → dom 𝑆 ∈ On)
2826, 27syl 17 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → dom 𝑆 ∈ On)
29283ad2ant1 1133 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → dom 𝑆 ∈ On)
3022noinfno 27663 . . . . . . . 8 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
31 nodmon 27595 . . . . . . . 8 (𝑇 No → dom 𝑇 ∈ On)
3230, 31syl 17 . . . . . . 7 ((𝐵 No 𝐵 ∈ V) → dom 𝑇 ∈ On)
33323ad2ant2 1134 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → dom 𝑇 ∈ On)
34 onun2 6430 . . . . . 6 ((dom 𝑆 ∈ On ∧ dom 𝑇 ∈ On) → (dom 𝑆 ∪ dom 𝑇) ∈ On)
3529, 33, 34syl2anc 584 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (dom 𝑆 ∪ dom 𝑇) ∈ On)
36 noreson 27605 . . . . 5 ((𝑊 No ∧ (dom 𝑆 ∪ dom 𝑇) ∈ On) → (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No )
3716, 35, 36syl2anc 584 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No )
3817nosupbnd2 27661 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No ) → (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ ¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆))
3914, 15, 37, 38syl3anc 1373 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ ¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆))
4020, 21, 373jca 1128 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (𝐵 No 𝐵 ∈ V ∧ (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No ))
4122noinfbnd2 27676 . . . 4 ((𝐵 No 𝐵 ∈ V ∧ (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No ) → (∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏 ↔ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇)))
4240, 41syl 17 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏 ↔ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇)))
4339, 42anbi12d 632 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏) ↔ (¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇))))
4413, 25, 433bitr4d 311 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3444  cun 3909  wss 3911  ifcif 4484  {csn 4585  cop 4591   class class class wbr 5102  cmpt 5183  dom cdm 5631  cres 5633  Oncon0 6320  suc csuc 6322  cio 6450  cfv 6499  crio 7325  1oc1o 8404  2oc2o 8405   No csur 27584   <s cslt 27585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589
This theorem is referenced by:  noetalem1  27686
  Copyright terms: Public domain W3C validator