Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupinfsep Structured version   Visualization version   GIF version

Theorem nosupinfsep 33568
Description: Given two sets of surreals, a surreal 𝑊 separates them iff its restriction to the maximum of dom 𝑆 and dom 𝑇 separates them. Corollary 4.4 of [Lipparini] p. 7. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
nosupinfsep.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
nosupinfsep.2 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupinfsep (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏)))
Distinct variable groups:   𝐴,𝑎,𝑔,𝑢,𝑣,𝑥,𝑦   𝐵,𝑏,𝑔   𝑢,𝐵   𝑣,𝑏,𝐵,𝑥,𝑦   𝑢,𝑔,𝑣,𝑥,𝑦   𝑆,𝑎   𝑆,𝑏,𝑔,𝑥   𝑇,𝑎   𝑇,𝑏,𝑔,𝑥   𝑣,𝑢,𝑥,𝑦   𝑊,𝑎   𝑊,𝑏,𝑔,𝑥   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑏)   𝐵(𝑎)   𝑆(𝑦,𝑣,𝑢)   𝑇(𝑦,𝑣,𝑢)   𝑊(𝑦,𝑣,𝑢)

Proof of Theorem nosupinfsep
StepHypRef Expression
1 ssun1 4060 . . . . . . . 8 dom 𝑆 ⊆ (dom 𝑆 ∪ dom 𝑇)
2 resabs1 5849 . . . . . . . 8 (dom 𝑆 ⊆ (dom 𝑆 ∪ dom 𝑇) → ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) = (𝑊 ↾ dom 𝑆))
31, 2ax-mp 5 . . . . . . 7 ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) = (𝑊 ↾ dom 𝑆)
43breq1i 5034 . . . . . 6 (((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ↔ (𝑊 ↾ dom 𝑆) <s 𝑆)
54notbii 323 . . . . 5 (¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ↔ ¬ (𝑊 ↾ dom 𝑆) <s 𝑆)
6 ssun2 4061 . . . . . . . 8 dom 𝑇 ⊆ (dom 𝑆 ∪ dom 𝑇)
7 resabs1 5849 . . . . . . . 8 (dom 𝑇 ⊆ (dom 𝑆 ∪ dom 𝑇) → ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇) = (𝑊 ↾ dom 𝑇))
86, 7ax-mp 5 . . . . . . 7 ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇) = (𝑊 ↾ dom 𝑇)
98breq2i 5035 . . . . . 6 (𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇) ↔ 𝑇 <s (𝑊 ↾ dom 𝑇))
109notbii 323 . . . . 5 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇) ↔ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))
115, 10anbi12i 630 . . . 4 ((¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇)) ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)))
1211bicomi 227 . . 3 ((¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)) ↔ (¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇)))
1312a1i 11 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)) ↔ (¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇))))
14 simp1l 1198 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝐴 No )
15 simp1r 1199 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝐴 ∈ V)
16 simp3 1139 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝑊 No )
17 nosupinfsep.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1817nosupbnd2 33552 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝑊 No ) → (∀𝑎𝐴 𝑎 <s 𝑊 ↔ ¬ (𝑊 ↾ dom 𝑆) <s 𝑆))
1914, 15, 16, 18syl3anc 1372 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (∀𝑎𝐴 𝑎 <s 𝑊 ↔ ¬ (𝑊 ↾ dom 𝑆) <s 𝑆))
20 simp2l 1200 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝐵 No )
21 simp2r 1201 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝐵 ∈ V)
22 nosupinfsep.2 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2322noinfbnd2 33567 . . . 4 ((𝐵 No 𝐵 ∈ V ∧ 𝑊 No ) → (∀𝑏𝐵 𝑊 <s 𝑏 ↔ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)))
2420, 21, 16, 23syl3anc 1372 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (∀𝑏𝐵 𝑊 <s 𝑏 ↔ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)))
2519, 24anbi12d 634 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏) ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))))
2617nosupno 33539 . . . . . . . 8 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
27 nodmon 33486 . . . . . . . 8 (𝑆 No → dom 𝑆 ∈ On)
2826, 27syl 17 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → dom 𝑆 ∈ On)
29283ad2ant1 1134 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → dom 𝑆 ∈ On)
3022noinfno 33554 . . . . . . . 8 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
31 nodmon 33486 . . . . . . . 8 (𝑇 No → dom 𝑇 ∈ On)
3230, 31syl 17 . . . . . . 7 ((𝐵 No 𝐵 ∈ V) → dom 𝑇 ∈ On)
33323ad2ant2 1135 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → dom 𝑇 ∈ On)
34 onun2 6270 . . . . . 6 ((dom 𝑆 ∈ On ∧ dom 𝑇 ∈ On) → (dom 𝑆 ∪ dom 𝑇) ∈ On)
3529, 33, 34syl2anc 587 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (dom 𝑆 ∪ dom 𝑇) ∈ On)
36 noreson 33496 . . . . 5 ((𝑊 No ∧ (dom 𝑆 ∪ dom 𝑇) ∈ On) → (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No )
3716, 35, 36syl2anc 587 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No )
3817nosupbnd2 33552 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No ) → (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ ¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆))
3914, 15, 37, 38syl3anc 1372 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ ¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆))
4020, 21, 373jca 1129 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (𝐵 No 𝐵 ∈ V ∧ (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No ))
4122noinfbnd2 33567 . . . 4 ((𝐵 No 𝐵 ∈ V ∧ (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No ) → (∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏 ↔ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇)))
4240, 41syl 17 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏 ↔ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇)))
4339, 42anbi12d 634 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏) ↔ (¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇))))
4413, 25, 433bitr4d 314 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  {cab 2716  wral 3053  wrex 3054  Vcvv 3397  cun 3839  wss 3841  ifcif 4411  {csn 4513  cop 4519   class class class wbr 5027  cmpt 5107  dom cdm 5519  cres 5521  Oncon0 6166  suc csuc 6168  cio 6289  cfv 6333  crio 7120  1oc1o 8117  2oc2o 8118   No csur 33476   <s cslt 33477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6169  df-on 6170  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-1o 8124  df-2o 8125  df-no 33479  df-slt 33480  df-bday 33481
This theorem is referenced by:  noetalem1  33577
  Copyright terms: Public domain W3C validator