Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupinfsep Structured version   Visualization version   GIF version

Theorem nosupinfsep 33862
Description: Given two sets of surreals, a surreal 𝑊 separates them iff its restriction to the maximum of dom 𝑆 and dom 𝑇 separates them. Corollary 4.4 of [Lipparini] p. 7. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
nosupinfsep.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
nosupinfsep.2 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupinfsep (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏)))
Distinct variable groups:   𝐴,𝑎,𝑔,𝑢,𝑣,𝑥,𝑦   𝐵,𝑏,𝑔   𝑢,𝐵   𝑣,𝑏,𝐵,𝑥,𝑦   𝑢,𝑔,𝑣,𝑥,𝑦   𝑆,𝑎   𝑆,𝑏,𝑔,𝑥   𝑇,𝑎   𝑇,𝑏,𝑔,𝑥   𝑣,𝑢,𝑥,𝑦   𝑊,𝑎   𝑊,𝑏,𝑔,𝑥   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑏)   𝐵(𝑎)   𝑆(𝑦,𝑣,𝑢)   𝑇(𝑦,𝑣,𝑢)   𝑊(𝑦,𝑣,𝑢)

Proof of Theorem nosupinfsep
StepHypRef Expression
1 ssun1 4102 . . . . . . . 8 dom 𝑆 ⊆ (dom 𝑆 ∪ dom 𝑇)
2 resabs1 5910 . . . . . . . 8 (dom 𝑆 ⊆ (dom 𝑆 ∪ dom 𝑇) → ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) = (𝑊 ↾ dom 𝑆))
31, 2ax-mp 5 . . . . . . 7 ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) = (𝑊 ↾ dom 𝑆)
43breq1i 5077 . . . . . 6 (((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ↔ (𝑊 ↾ dom 𝑆) <s 𝑆)
54notbii 319 . . . . 5 (¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ↔ ¬ (𝑊 ↾ dom 𝑆) <s 𝑆)
6 ssun2 4103 . . . . . . . 8 dom 𝑇 ⊆ (dom 𝑆 ∪ dom 𝑇)
7 resabs1 5910 . . . . . . . 8 (dom 𝑇 ⊆ (dom 𝑆 ∪ dom 𝑇) → ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇) = (𝑊 ↾ dom 𝑇))
86, 7ax-mp 5 . . . . . . 7 ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇) = (𝑊 ↾ dom 𝑇)
98breq2i 5078 . . . . . 6 (𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇) ↔ 𝑇 <s (𝑊 ↾ dom 𝑇))
109notbii 319 . . . . 5 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇) ↔ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))
115, 10anbi12i 626 . . . 4 ((¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇)) ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)))
1211bicomi 223 . . 3 ((¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)) ↔ (¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇)))
1312a1i 11 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)) ↔ (¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇))))
14 simp1l 1195 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝐴 No )
15 simp1r 1196 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝐴 ∈ V)
16 simp3 1136 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝑊 No )
17 nosupinfsep.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1817nosupbnd2 33846 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝑊 No ) → (∀𝑎𝐴 𝑎 <s 𝑊 ↔ ¬ (𝑊 ↾ dom 𝑆) <s 𝑆))
1914, 15, 16, 18syl3anc 1369 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (∀𝑎𝐴 𝑎 <s 𝑊 ↔ ¬ (𝑊 ↾ dom 𝑆) <s 𝑆))
20 simp2l 1197 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝐵 No )
21 simp2r 1198 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → 𝐵 ∈ V)
22 nosupinfsep.2 . . . . 5 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2322noinfbnd2 33861 . . . 4 ((𝐵 No 𝐵 ∈ V ∧ 𝑊 No ) → (∀𝑏𝐵 𝑊 <s 𝑏 ↔ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)))
2420, 21, 16, 23syl3anc 1369 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (∀𝑏𝐵 𝑊 <s 𝑏 ↔ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)))
2519, 24anbi12d 630 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏) ↔ (¬ (𝑊 ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))))
2617nosupno 33833 . . . . . . . 8 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
27 nodmon 33780 . . . . . . . 8 (𝑆 No → dom 𝑆 ∈ On)
2826, 27syl 17 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → dom 𝑆 ∈ On)
29283ad2ant1 1131 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → dom 𝑆 ∈ On)
3022noinfno 33848 . . . . . . . 8 ((𝐵 No 𝐵 ∈ V) → 𝑇 No )
31 nodmon 33780 . . . . . . . 8 (𝑇 No → dom 𝑇 ∈ On)
3230, 31syl 17 . . . . . . 7 ((𝐵 No 𝐵 ∈ V) → dom 𝑇 ∈ On)
33323ad2ant2 1132 . . . . . 6 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → dom 𝑇 ∈ On)
34 onun2 6355 . . . . . 6 ((dom 𝑆 ∈ On ∧ dom 𝑇 ∈ On) → (dom 𝑆 ∪ dom 𝑇) ∈ On)
3529, 33, 34syl2anc 583 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (dom 𝑆 ∪ dom 𝑇) ∈ On)
36 noreson 33790 . . . . 5 ((𝑊 No ∧ (dom 𝑆 ∪ dom 𝑇) ∈ On) → (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No )
3716, 35, 36syl2anc 583 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No )
3817nosupbnd2 33846 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No ) → (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ ¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆))
3914, 15, 37, 38syl3anc 1369 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↔ ¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆))
4020, 21, 373jca 1126 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (𝐵 No 𝐵 ∈ V ∧ (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No ))
4122noinfbnd2 33861 . . . 4 ((𝐵 No 𝐵 ∈ V ∧ (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∈ No ) → (∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏 ↔ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇)))
4240, 41syl 17 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → (∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏 ↔ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇)))
4339, 42anbi12d 630 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏) ↔ (¬ ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑆) <s 𝑆 ∧ ¬ 𝑇 <s ((𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ↾ dom 𝑇))))
4413, 25, 433bitr4d 310 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ 𝑊 No ) → ((∀𝑎𝐴 𝑎 <s 𝑊 ∧ ∀𝑏𝐵 𝑊 <s 𝑏) ↔ (∀𝑎𝐴 𝑎 <s (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) ∧ ∀𝑏𝐵 (𝑊 ↾ (dom 𝑆 ∪ dom 𝑇)) <s 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  cun 3881  wss 3883  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153  dom cdm 5580  cres 5582  Oncon0 6251  suc csuc 6253  cio 6374  cfv 6418  crio 7211  1oc1o 8260  2oc2o 8261   No csur 33770   <s cslt 33771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775
This theorem is referenced by:  noetalem1  33871
  Copyright terms: Public domain W3C validator