Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onexlimgt Structured version   Visualization version   GIF version

Theorem onexlimgt 43234
Description: For any ordinal, there is always a larger limit ordinal. (Contributed by RP, 1-Feb-2025.)
Assertion
Ref Expression
onexlimgt (𝐴 ∈ On → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem onexlimgt
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 omelon 9665 . . . 4 ω ∈ On
2 onun2 6467 . . . 4 ((𝐴 ∈ On ∧ ω ∈ On) → (𝐴 ∪ ω) ∈ On)
31, 2mpan2 691 . . 3 (𝐴 ∈ On → (𝐴 ∪ ω) ∈ On)
4 onexomgt 43232 . . 3 ((𝐴 ∪ ω) ∈ On → ∃𝑎 ∈ On (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
53, 4syl 17 . 2 (𝐴 ∈ On → ∃𝑎 ∈ On (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
6 simp2 1137 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝑎 ∈ On)
7 omcl 8553 . . . . 5 ((ω ∈ On ∧ 𝑎 ∈ On) → (ω ·o 𝑎) ∈ On)
81, 6, 7sylancr 587 . . . 4 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (ω ·o 𝑎) ∈ On)
9 noel 4318 . . . . . . . . . 10 ¬ (𝐴 ∪ ω) ∈ ∅
10 oveq2 7418 . . . . . . . . . . . . . 14 (𝑎 = ∅ → (ω ·o 𝑎) = (ω ·o ∅))
11 om0 8534 . . . . . . . . . . . . . . 15 (ω ∈ On → (ω ·o ∅) = ∅)
121, 11ax-mp 5 . . . . . . . . . . . . . 14 (ω ·o ∅) = ∅
1310, 12eqtrdi 2787 . . . . . . . . . . . . 13 (𝑎 = ∅ → (ω ·o 𝑎) = ∅)
1413eleq2d 2821 . . . . . . . . . . . 12 (𝑎 = ∅ → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) ↔ (𝐴 ∪ ω) ∈ ∅))
1514notbid 318 . . . . . . . . . . 11 (𝑎 = ∅ → (¬ (𝐴 ∪ ω) ∈ (ω ·o 𝑎) ↔ ¬ (𝐴 ∪ ω) ∈ ∅))
1615adantl 481 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑎 ∈ On) ∧ 𝑎 = ∅) → (¬ (𝐴 ∪ ω) ∈ (ω ·o 𝑎) ↔ ¬ (𝐴 ∪ ω) ∈ ∅))
179, 16mpbiri 258 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑎 ∈ On) ∧ 𝑎 = ∅) → ¬ (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
1817pm2.21d 121 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑎 ∈ On) ∧ 𝑎 = ∅) → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) → Lim (ω ·o 𝑎)))
1918ex 412 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑎 ∈ On) → (𝑎 = ∅ → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) → Lim (ω ·o 𝑎))))
2019com23 86 . . . . . 6 ((𝐴 ∈ On ∧ 𝑎 ∈ On) → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) → (𝑎 = ∅ → Lim (ω ·o 𝑎))))
21203impia 1117 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝑎 = ∅ → Lim (ω ·o 𝑎)))
22 limom 7882 . . . . . . . . 9 Lim ω
231, 22pm3.2i 470 . . . . . . . 8 (ω ∈ On ∧ Lim ω)
246, 23jctir 520 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝑎 ∈ On ∧ (ω ∈ On ∧ Lim ω)))
25 omlimcl2 43233 . . . . . . 7 (((𝑎 ∈ On ∧ (ω ∈ On ∧ Lim ω)) ∧ ∅ ∈ 𝑎) → Lim (ω ·o 𝑎))
2624, 25sylan 580 . . . . . 6 (((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) ∧ ∅ ∈ 𝑎) → Lim (ω ·o 𝑎))
2726ex 412 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (∅ ∈ 𝑎 → Lim (ω ·o 𝑎)))
28 on0eqel 6483 . . . . . 6 (𝑎 ∈ On → (𝑎 = ∅ ∨ ∅ ∈ 𝑎))
296, 28syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝑎 = ∅ ∨ ∅ ∈ 𝑎))
3021, 27, 29mpjaod 860 . . . 4 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → Lim (ω ·o 𝑎))
31 simp1 1136 . . . . . 6 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝐴 ∈ On)
3231, 8jca 511 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝐴 ∈ On ∧ (ω ·o 𝑎) ∈ On))
33 simp3 1138 . . . . . 6 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
34 ssun1 4158 . . . . . 6 𝐴 ⊆ (𝐴 ∪ ω)
3533, 34jctil 519 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝐴 ⊆ (𝐴 ∪ ω) ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)))
36 ontr2 6405 . . . . 5 ((𝐴 ∈ On ∧ (ω ·o 𝑎) ∈ On) → ((𝐴 ⊆ (𝐴 ∪ ω) ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝐴 ∈ (ω ·o 𝑎)))
3732, 35, 36sylc 65 . . . 4 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝐴 ∈ (ω ·o 𝑎))
38 limeq 6369 . . . . . 6 (𝑥 = (ω ·o 𝑎) → (Lim 𝑥 ↔ Lim (ω ·o 𝑎)))
39 eleq2 2824 . . . . . 6 (𝑥 = (ω ·o 𝑎) → (𝐴𝑥𝐴 ∈ (ω ·o 𝑎)))
4038, 39anbi12d 632 . . . . 5 (𝑥 = (ω ·o 𝑎) → ((Lim 𝑥𝐴𝑥) ↔ (Lim (ω ·o 𝑎) ∧ 𝐴 ∈ (ω ·o 𝑎))))
4140rspcev 3606 . . . 4 (((ω ·o 𝑎) ∈ On ∧ (Lim (ω ·o 𝑎) ∧ 𝐴 ∈ (ω ·o 𝑎))) → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
428, 30, 37, 41syl12anc 836 . . 3 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
4342rexlimdv3a 3146 . 2 (𝐴 ∈ On → (∃𝑎 ∈ On (𝐴 ∪ ω) ∈ (ω ·o 𝑎) → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥)))
445, 43mpd 15 1 (𝐴 ∈ On → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3061  cun 3929  wss 3931  c0 4313  Oncon0 6357  Lim wlim 6358  (class class class)co 7410  ωcom 7866   ·o comu 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator