Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onexlimgt Structured version   Visualization version   GIF version

Theorem onexlimgt 43204
Description: For any ordinal, there is always a larger limit ordinal. (Contributed by RP, 1-Feb-2025.)
Assertion
Ref Expression
onexlimgt (𝐴 ∈ On → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem onexlimgt
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 omelon 9715 . . . 4 ω ∈ On
2 onun2 6503 . . . 4 ((𝐴 ∈ On ∧ ω ∈ On) → (𝐴 ∪ ω) ∈ On)
31, 2mpan2 690 . . 3 (𝐴 ∈ On → (𝐴 ∪ ω) ∈ On)
4 onexomgt 43202 . . 3 ((𝐴 ∪ ω) ∈ On → ∃𝑎 ∈ On (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
53, 4syl 17 . 2 (𝐴 ∈ On → ∃𝑎 ∈ On (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
6 simp2 1137 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝑎 ∈ On)
7 omcl 8592 . . . . 5 ((ω ∈ On ∧ 𝑎 ∈ On) → (ω ·o 𝑎) ∈ On)
81, 6, 7sylancr 586 . . . 4 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (ω ·o 𝑎) ∈ On)
9 noel 4360 . . . . . . . . . 10 ¬ (𝐴 ∪ ω) ∈ ∅
10 oveq2 7456 . . . . . . . . . . . . . 14 (𝑎 = ∅ → (ω ·o 𝑎) = (ω ·o ∅))
11 om0 8573 . . . . . . . . . . . . . . 15 (ω ∈ On → (ω ·o ∅) = ∅)
121, 11ax-mp 5 . . . . . . . . . . . . . 14 (ω ·o ∅) = ∅
1310, 12eqtrdi 2796 . . . . . . . . . . . . 13 (𝑎 = ∅ → (ω ·o 𝑎) = ∅)
1413eleq2d 2830 . . . . . . . . . . . 12 (𝑎 = ∅ → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) ↔ (𝐴 ∪ ω) ∈ ∅))
1514notbid 318 . . . . . . . . . . 11 (𝑎 = ∅ → (¬ (𝐴 ∪ ω) ∈ (ω ·o 𝑎) ↔ ¬ (𝐴 ∪ ω) ∈ ∅))
1615adantl 481 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑎 ∈ On) ∧ 𝑎 = ∅) → (¬ (𝐴 ∪ ω) ∈ (ω ·o 𝑎) ↔ ¬ (𝐴 ∪ ω) ∈ ∅))
179, 16mpbiri 258 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑎 ∈ On) ∧ 𝑎 = ∅) → ¬ (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
1817pm2.21d 121 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑎 ∈ On) ∧ 𝑎 = ∅) → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) → Lim (ω ·o 𝑎)))
1918ex 412 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑎 ∈ On) → (𝑎 = ∅ → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) → Lim (ω ·o 𝑎))))
2019com23 86 . . . . . 6 ((𝐴 ∈ On ∧ 𝑎 ∈ On) → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) → (𝑎 = ∅ → Lim (ω ·o 𝑎))))
21203impia 1117 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝑎 = ∅ → Lim (ω ·o 𝑎)))
22 limom 7919 . . . . . . . . 9 Lim ω
231, 22pm3.2i 470 . . . . . . . 8 (ω ∈ On ∧ Lim ω)
246, 23jctir 520 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝑎 ∈ On ∧ (ω ∈ On ∧ Lim ω)))
25 omlimcl2 43203 . . . . . . 7 (((𝑎 ∈ On ∧ (ω ∈ On ∧ Lim ω)) ∧ ∅ ∈ 𝑎) → Lim (ω ·o 𝑎))
2624, 25sylan 579 . . . . . 6 (((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) ∧ ∅ ∈ 𝑎) → Lim (ω ·o 𝑎))
2726ex 412 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (∅ ∈ 𝑎 → Lim (ω ·o 𝑎)))
28 on0eqel 6519 . . . . . 6 (𝑎 ∈ On → (𝑎 = ∅ ∨ ∅ ∈ 𝑎))
296, 28syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝑎 = ∅ ∨ ∅ ∈ 𝑎))
3021, 27, 29mpjaod 859 . . . 4 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → Lim (ω ·o 𝑎))
31 simp1 1136 . . . . . 6 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝐴 ∈ On)
3231, 8jca 511 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝐴 ∈ On ∧ (ω ·o 𝑎) ∈ On))
33 simp3 1138 . . . . . 6 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
34 ssun1 4201 . . . . . 6 𝐴 ⊆ (𝐴 ∪ ω)
3533, 34jctil 519 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝐴 ⊆ (𝐴 ∪ ω) ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)))
36 ontr2 6442 . . . . 5 ((𝐴 ∈ On ∧ (ω ·o 𝑎) ∈ On) → ((𝐴 ⊆ (𝐴 ∪ ω) ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝐴 ∈ (ω ·o 𝑎)))
3732, 35, 36sylc 65 . . . 4 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝐴 ∈ (ω ·o 𝑎))
38 limeq 6407 . . . . . 6 (𝑥 = (ω ·o 𝑎) → (Lim 𝑥 ↔ Lim (ω ·o 𝑎)))
39 eleq2 2833 . . . . . 6 (𝑥 = (ω ·o 𝑎) → (𝐴𝑥𝐴 ∈ (ω ·o 𝑎)))
4038, 39anbi12d 631 . . . . 5 (𝑥 = (ω ·o 𝑎) → ((Lim 𝑥𝐴𝑥) ↔ (Lim (ω ·o 𝑎) ∧ 𝐴 ∈ (ω ·o 𝑎))))
4140rspcev 3635 . . . 4 (((ω ·o 𝑎) ∈ On ∧ (Lim (ω ·o 𝑎) ∧ 𝐴 ∈ (ω ·o 𝑎))) → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
428, 30, 37, 41syl12anc 836 . . 3 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
4342rexlimdv3a 3165 . 2 (𝐴 ∈ On → (∃𝑎 ∈ On (𝐴 ∪ ω) ∈ (ω ·o 𝑎) → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥)))
445, 43mpd 15 1 (𝐴 ∈ On → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cun 3974  wss 3976  c0 4352  Oncon0 6395  Lim wlim 6396  (class class class)co 7448  ωcom 7903   ·o comu 8520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator