Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onexlimgt Structured version   Visualization version   GIF version

Theorem onexlimgt 43284
Description: For any ordinal, there is always a larger limit ordinal. (Contributed by RP, 1-Feb-2025.)
Assertion
Ref Expression
onexlimgt (𝐴 ∈ On → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem onexlimgt
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 omelon 9536 . . . 4 ω ∈ On
2 onun2 6416 . . . 4 ((𝐴 ∈ On ∧ ω ∈ On) → (𝐴 ∪ ω) ∈ On)
31, 2mpan2 691 . . 3 (𝐴 ∈ On → (𝐴 ∪ ω) ∈ On)
4 onexomgt 43282 . . 3 ((𝐴 ∪ ω) ∈ On → ∃𝑎 ∈ On (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
53, 4syl 17 . 2 (𝐴 ∈ On → ∃𝑎 ∈ On (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
6 simp2 1137 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝑎 ∈ On)
7 omcl 8451 . . . . 5 ((ω ∈ On ∧ 𝑎 ∈ On) → (ω ·o 𝑎) ∈ On)
81, 6, 7sylancr 587 . . . 4 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (ω ·o 𝑎) ∈ On)
9 noel 4285 . . . . . . . . . 10 ¬ (𝐴 ∪ ω) ∈ ∅
10 oveq2 7354 . . . . . . . . . . . . . 14 (𝑎 = ∅ → (ω ·o 𝑎) = (ω ·o ∅))
11 om0 8432 . . . . . . . . . . . . . . 15 (ω ∈ On → (ω ·o ∅) = ∅)
121, 11ax-mp 5 . . . . . . . . . . . . . 14 (ω ·o ∅) = ∅
1310, 12eqtrdi 2782 . . . . . . . . . . . . 13 (𝑎 = ∅ → (ω ·o 𝑎) = ∅)
1413eleq2d 2817 . . . . . . . . . . . 12 (𝑎 = ∅ → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) ↔ (𝐴 ∪ ω) ∈ ∅))
1514notbid 318 . . . . . . . . . . 11 (𝑎 = ∅ → (¬ (𝐴 ∪ ω) ∈ (ω ·o 𝑎) ↔ ¬ (𝐴 ∪ ω) ∈ ∅))
1615adantl 481 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑎 ∈ On) ∧ 𝑎 = ∅) → (¬ (𝐴 ∪ ω) ∈ (ω ·o 𝑎) ↔ ¬ (𝐴 ∪ ω) ∈ ∅))
179, 16mpbiri 258 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑎 ∈ On) ∧ 𝑎 = ∅) → ¬ (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
1817pm2.21d 121 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑎 ∈ On) ∧ 𝑎 = ∅) → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) → Lim (ω ·o 𝑎)))
1918ex 412 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑎 ∈ On) → (𝑎 = ∅ → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) → Lim (ω ·o 𝑎))))
2019com23 86 . . . . . 6 ((𝐴 ∈ On ∧ 𝑎 ∈ On) → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) → (𝑎 = ∅ → Lim (ω ·o 𝑎))))
21203impia 1117 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝑎 = ∅ → Lim (ω ·o 𝑎)))
22 limom 7812 . . . . . . . . 9 Lim ω
231, 22pm3.2i 470 . . . . . . . 8 (ω ∈ On ∧ Lim ω)
246, 23jctir 520 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝑎 ∈ On ∧ (ω ∈ On ∧ Lim ω)))
25 omlimcl2 43283 . . . . . . 7 (((𝑎 ∈ On ∧ (ω ∈ On ∧ Lim ω)) ∧ ∅ ∈ 𝑎) → Lim (ω ·o 𝑎))
2624, 25sylan 580 . . . . . 6 (((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) ∧ ∅ ∈ 𝑎) → Lim (ω ·o 𝑎))
2726ex 412 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (∅ ∈ 𝑎 → Lim (ω ·o 𝑎)))
28 on0eqel 6431 . . . . . 6 (𝑎 ∈ On → (𝑎 = ∅ ∨ ∅ ∈ 𝑎))
296, 28syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝑎 = ∅ ∨ ∅ ∈ 𝑎))
3021, 27, 29mpjaod 860 . . . 4 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → Lim (ω ·o 𝑎))
31 simp1 1136 . . . . . 6 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝐴 ∈ On)
3231, 8jca 511 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝐴 ∈ On ∧ (ω ·o 𝑎) ∈ On))
33 simp3 1138 . . . . . 6 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
34 ssun1 4125 . . . . . 6 𝐴 ⊆ (𝐴 ∪ ω)
3533, 34jctil 519 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝐴 ⊆ (𝐴 ∪ ω) ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)))
36 ontr2 6354 . . . . 5 ((𝐴 ∈ On ∧ (ω ·o 𝑎) ∈ On) → ((𝐴 ⊆ (𝐴 ∪ ω) ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝐴 ∈ (ω ·o 𝑎)))
3732, 35, 36sylc 65 . . . 4 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝐴 ∈ (ω ·o 𝑎))
38 limeq 6318 . . . . . 6 (𝑥 = (ω ·o 𝑎) → (Lim 𝑥 ↔ Lim (ω ·o 𝑎)))
39 eleq2 2820 . . . . . 6 (𝑥 = (ω ·o 𝑎) → (𝐴𝑥𝐴 ∈ (ω ·o 𝑎)))
4038, 39anbi12d 632 . . . . 5 (𝑥 = (ω ·o 𝑎) → ((Lim 𝑥𝐴𝑥) ↔ (Lim (ω ·o 𝑎) ∧ 𝐴 ∈ (ω ·o 𝑎))))
4140rspcev 3572 . . . 4 (((ω ·o 𝑎) ∈ On ∧ (Lim (ω ·o 𝑎) ∧ 𝐴 ∈ (ω ·o 𝑎))) → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
428, 30, 37, 41syl12anc 836 . . 3 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
4342rexlimdv3a 3137 . 2 (𝐴 ∈ On → (∃𝑎 ∈ On (𝐴 ∪ ω) ∈ (ω ·o 𝑎) → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥)))
445, 43mpd 15 1 (𝐴 ∈ On → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  cun 3895  wss 3897  c0 4280  Oncon0 6306  Lim wlim 6307  (class class class)co 7346  ωcom 7796   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator