Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onexlimgt Structured version   Visualization version   GIF version

Theorem onexlimgt 43239
Description: For any ordinal, there is always a larger limit ordinal. (Contributed by RP, 1-Feb-2025.)
Assertion
Ref Expression
onexlimgt (𝐴 ∈ On → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem onexlimgt
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 omelon 9606 . . . 4 ω ∈ On
2 onun2 6445 . . . 4 ((𝐴 ∈ On ∧ ω ∈ On) → (𝐴 ∪ ω) ∈ On)
31, 2mpan2 691 . . 3 (𝐴 ∈ On → (𝐴 ∪ ω) ∈ On)
4 onexomgt 43237 . . 3 ((𝐴 ∪ ω) ∈ On → ∃𝑎 ∈ On (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
53, 4syl 17 . 2 (𝐴 ∈ On → ∃𝑎 ∈ On (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
6 simp2 1137 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝑎 ∈ On)
7 omcl 8503 . . . . 5 ((ω ∈ On ∧ 𝑎 ∈ On) → (ω ·o 𝑎) ∈ On)
81, 6, 7sylancr 587 . . . 4 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (ω ·o 𝑎) ∈ On)
9 noel 4304 . . . . . . . . . 10 ¬ (𝐴 ∪ ω) ∈ ∅
10 oveq2 7398 . . . . . . . . . . . . . 14 (𝑎 = ∅ → (ω ·o 𝑎) = (ω ·o ∅))
11 om0 8484 . . . . . . . . . . . . . . 15 (ω ∈ On → (ω ·o ∅) = ∅)
121, 11ax-mp 5 . . . . . . . . . . . . . 14 (ω ·o ∅) = ∅
1310, 12eqtrdi 2781 . . . . . . . . . . . . 13 (𝑎 = ∅ → (ω ·o 𝑎) = ∅)
1413eleq2d 2815 . . . . . . . . . . . 12 (𝑎 = ∅ → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) ↔ (𝐴 ∪ ω) ∈ ∅))
1514notbid 318 . . . . . . . . . . 11 (𝑎 = ∅ → (¬ (𝐴 ∪ ω) ∈ (ω ·o 𝑎) ↔ ¬ (𝐴 ∪ ω) ∈ ∅))
1615adantl 481 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑎 ∈ On) ∧ 𝑎 = ∅) → (¬ (𝐴 ∪ ω) ∈ (ω ·o 𝑎) ↔ ¬ (𝐴 ∪ ω) ∈ ∅))
179, 16mpbiri 258 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑎 ∈ On) ∧ 𝑎 = ∅) → ¬ (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
1817pm2.21d 121 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑎 ∈ On) ∧ 𝑎 = ∅) → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) → Lim (ω ·o 𝑎)))
1918ex 412 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑎 ∈ On) → (𝑎 = ∅ → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) → Lim (ω ·o 𝑎))))
2019com23 86 . . . . . 6 ((𝐴 ∈ On ∧ 𝑎 ∈ On) → ((𝐴 ∪ ω) ∈ (ω ·o 𝑎) → (𝑎 = ∅ → Lim (ω ·o 𝑎))))
21203impia 1117 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝑎 = ∅ → Lim (ω ·o 𝑎)))
22 limom 7861 . . . . . . . . 9 Lim ω
231, 22pm3.2i 470 . . . . . . . 8 (ω ∈ On ∧ Lim ω)
246, 23jctir 520 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝑎 ∈ On ∧ (ω ∈ On ∧ Lim ω)))
25 omlimcl2 43238 . . . . . . 7 (((𝑎 ∈ On ∧ (ω ∈ On ∧ Lim ω)) ∧ ∅ ∈ 𝑎) → Lim (ω ·o 𝑎))
2624, 25sylan 580 . . . . . 6 (((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) ∧ ∅ ∈ 𝑎) → Lim (ω ·o 𝑎))
2726ex 412 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (∅ ∈ 𝑎 → Lim (ω ·o 𝑎)))
28 on0eqel 6461 . . . . . 6 (𝑎 ∈ On → (𝑎 = ∅ ∨ ∅ ∈ 𝑎))
296, 28syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝑎 = ∅ ∨ ∅ ∈ 𝑎))
3021, 27, 29mpjaod 860 . . . 4 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → Lim (ω ·o 𝑎))
31 simp1 1136 . . . . . 6 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝐴 ∈ On)
3231, 8jca 511 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝐴 ∈ On ∧ (ω ·o 𝑎) ∈ On))
33 simp3 1138 . . . . . 6 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝐴 ∪ ω) ∈ (ω ·o 𝑎))
34 ssun1 4144 . . . . . 6 𝐴 ⊆ (𝐴 ∪ ω)
3533, 34jctil 519 . . . . 5 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → (𝐴 ⊆ (𝐴 ∪ ω) ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)))
36 ontr2 6383 . . . . 5 ((𝐴 ∈ On ∧ (ω ·o 𝑎) ∈ On) → ((𝐴 ⊆ (𝐴 ∪ ω) ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝐴 ∈ (ω ·o 𝑎)))
3732, 35, 36sylc 65 . . . 4 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → 𝐴 ∈ (ω ·o 𝑎))
38 limeq 6347 . . . . . 6 (𝑥 = (ω ·o 𝑎) → (Lim 𝑥 ↔ Lim (ω ·o 𝑎)))
39 eleq2 2818 . . . . . 6 (𝑥 = (ω ·o 𝑎) → (𝐴𝑥𝐴 ∈ (ω ·o 𝑎)))
4038, 39anbi12d 632 . . . . 5 (𝑥 = (ω ·o 𝑎) → ((Lim 𝑥𝐴𝑥) ↔ (Lim (ω ·o 𝑎) ∧ 𝐴 ∈ (ω ·o 𝑎))))
4140rspcev 3591 . . . 4 (((ω ·o 𝑎) ∈ On ∧ (Lim (ω ·o 𝑎) ∧ 𝐴 ∈ (ω ·o 𝑎))) → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
428, 30, 37, 41syl12anc 836 . . 3 ((𝐴 ∈ On ∧ 𝑎 ∈ On ∧ (𝐴 ∪ ω) ∈ (ω ·o 𝑎)) → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
4342rexlimdv3a 3139 . 2 (𝐴 ∈ On → (∃𝑎 ∈ On (𝐴 ∪ ω) ∈ (ω ·o 𝑎) → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥)))
445, 43mpd 15 1 (𝐴 ∈ On → ∃𝑥 ∈ On (Lim 𝑥𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  cun 3915  wss 3917  c0 4299  Oncon0 6335  Lim wlim 6336  (class class class)co 7390  ωcom 7845   ·o comu 8435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator