Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnopabco Structured version   Visualization version   GIF version

Theorem fnopabco 35808
Description: Composition of a function with a function abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fnopabco.1 (𝑥𝐴𝐵𝐶)
fnopabco.2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
fnopabco.3 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐻𝐵))}
Assertion
Ref Expression
fnopabco (𝐻 Fn 𝐶𝐺 = (𝐻𝐹))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑦,𝐵   𝑥,𝐻,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fnopabco
StepHypRef Expression
1 fnopabco.3 . . 3 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐻𝐵))}
2 df-mpt 5154 . . 3 (𝑥𝐴 ↦ (𝐻𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐻𝐵))}
31, 2eqtr4i 2769 . 2 𝐺 = (𝑥𝐴 ↦ (𝐻𝐵))
4 fnopabco.1 . . . 4 (𝑥𝐴𝐵𝐶)
54adantl 481 . . 3 ((𝐻 Fn 𝐶𝑥𝐴) → 𝐵𝐶)
6 fnopabco.2 . . . . 5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
7 df-mpt 5154 . . . . 5 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
86, 7eqtr4i 2769 . . . 4 𝐹 = (𝑥𝐴𝐵)
98a1i 11 . . 3 (𝐻 Fn 𝐶𝐹 = (𝑥𝐴𝐵))
10 dffn5 6810 . . . 4 (𝐻 Fn 𝐶𝐻 = (𝑦𝐶 ↦ (𝐻𝑦)))
1110biimpi 215 . . 3 (𝐻 Fn 𝐶𝐻 = (𝑦𝐶 ↦ (𝐻𝑦)))
12 fveq2 6756 . . 3 (𝑦 = 𝐵 → (𝐻𝑦) = (𝐻𝐵))
135, 9, 11, 12fmptco 6983 . 2 (𝐻 Fn 𝐶 → (𝐻𝐹) = (𝑥𝐴 ↦ (𝐻𝐵)))
143, 13eqtr4id 2798 1 (𝐻 Fn 𝐶𝐺 = (𝐻𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {copab 5132  cmpt 5153  ccom 5584   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  opropabco  35809
  Copyright terms: Public domain W3C validator