![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnopabco | Structured version Visualization version GIF version |
Description: Composition of a function with a function abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
fnopabco.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶) |
fnopabco.2 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
fnopabco.3 | ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐻‘𝐵))} |
Ref | Expression |
---|---|
fnopabco | ⊢ (𝐻 Fn 𝐶 → 𝐺 = (𝐻 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnopabco.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶) | |
2 | 1 | adantl 474 | . . 3 ⊢ ((𝐻 Fn 𝐶 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
3 | fnopabco.2 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
4 | df-mpt 4921 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
5 | 3, 4 | eqtr4i 2822 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝐻 Fn 𝐶 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
7 | dffn5 6464 | . . . 4 ⊢ (𝐻 Fn 𝐶 ↔ 𝐻 = (𝑦 ∈ 𝐶 ↦ (𝐻‘𝑦))) | |
8 | 7 | biimpi 208 | . . 3 ⊢ (𝐻 Fn 𝐶 → 𝐻 = (𝑦 ∈ 𝐶 ↦ (𝐻‘𝑦))) |
9 | fveq2 6409 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐻‘𝑦) = (𝐻‘𝐵)) | |
10 | 2, 6, 8, 9 | fmptco 6621 | . 2 ⊢ (𝐻 Fn 𝐶 → (𝐻 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐻‘𝐵))) |
11 | fnopabco.3 | . . 3 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐻‘𝐵))} | |
12 | df-mpt 4921 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐻‘𝐵)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐻‘𝐵))} | |
13 | 11, 12 | eqtr4i 2822 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐻‘𝐵)) |
14 | 10, 13 | syl6reqr 2850 | 1 ⊢ (𝐻 Fn 𝐶 → 𝐺 = (𝐻 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {copab 4903 ↦ cmpt 4920 ∘ ccom 5314 Fn wfn 6094 ‘cfv 6099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-fv 6107 |
This theorem is referenced by: opropabco 33998 |
Copyright terms: Public domain | W3C validator |