Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnopabco | Structured version Visualization version GIF version |
Description: Composition of a function with a function abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
fnopabco.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶) |
fnopabco.2 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
fnopabco.3 | ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐻‘𝐵))} |
Ref | Expression |
---|---|
fnopabco | ⊢ (𝐻 Fn 𝐶 → 𝐺 = (𝐻 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnopabco.3 | . . 3 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐻‘𝐵))} | |
2 | df-mpt 5154 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐻‘𝐵)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐻‘𝐵))} | |
3 | 1, 2 | eqtr4i 2769 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐻‘𝐵)) |
4 | fnopabco.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝐻 Fn 𝐶 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
6 | fnopabco.2 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
7 | df-mpt 5154 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
8 | 6, 7 | eqtr4i 2769 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
9 | 8 | a1i 11 | . . 3 ⊢ (𝐻 Fn 𝐶 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
10 | dffn5 6810 | . . . 4 ⊢ (𝐻 Fn 𝐶 ↔ 𝐻 = (𝑦 ∈ 𝐶 ↦ (𝐻‘𝑦))) | |
11 | 10 | biimpi 215 | . . 3 ⊢ (𝐻 Fn 𝐶 → 𝐻 = (𝑦 ∈ 𝐶 ↦ (𝐻‘𝑦))) |
12 | fveq2 6756 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐻‘𝑦) = (𝐻‘𝐵)) | |
13 | 5, 9, 11, 12 | fmptco 6983 | . 2 ⊢ (𝐻 Fn 𝐶 → (𝐻 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐻‘𝐵))) |
14 | 3, 13 | eqtr4id 2798 | 1 ⊢ (𝐻 Fn 𝐶 → 𝐺 = (𝐻 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {copab 5132 ↦ cmpt 5153 ∘ ccom 5584 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: opropabco 35809 |
Copyright terms: Public domain | W3C validator |