| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnopabco | Structured version Visualization version GIF version | ||
| Description: Composition of a function with a function abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| fnopabco.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶) |
| fnopabco.2 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| fnopabco.3 | ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐻‘𝐵))} |
| Ref | Expression |
|---|---|
| fnopabco | ⊢ (𝐻 Fn 𝐶 → 𝐺 = (𝐻 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnopabco.3 | . . 3 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐻‘𝐵))} | |
| 2 | df-mpt 5189 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐻‘𝐵)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐻‘𝐵))} | |
| 3 | 1, 2 | eqtr4i 2755 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐻‘𝐵)) |
| 4 | fnopabco.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐻 Fn 𝐶 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| 6 | fnopabco.2 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 7 | df-mpt 5189 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 8 | 6, 7 | eqtr4i 2755 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝐻 Fn 𝐶 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 10 | dffn5 6919 | . . . 4 ⊢ (𝐻 Fn 𝐶 ↔ 𝐻 = (𝑦 ∈ 𝐶 ↦ (𝐻‘𝑦))) | |
| 11 | 10 | biimpi 216 | . . 3 ⊢ (𝐻 Fn 𝐶 → 𝐻 = (𝑦 ∈ 𝐶 ↦ (𝐻‘𝑦))) |
| 12 | fveq2 6858 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐻‘𝑦) = (𝐻‘𝐵)) | |
| 13 | 5, 9, 11, 12 | fmptco 7101 | . 2 ⊢ (𝐻 Fn 𝐶 → (𝐻 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐻‘𝐵))) |
| 14 | 3, 13 | eqtr4id 2783 | 1 ⊢ (𝐻 Fn 𝐶 → 𝐺 = (𝐻 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5169 ↦ cmpt 5188 ∘ ccom 5642 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: opropabco 37718 |
| Copyright terms: Public domain | W3C validator |