Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnopabco Structured version   Visualization version   GIF version

Theorem fnopabco 36586
Description: Composition of a function with a function abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fnopabco.1 (𝑥𝐴𝐵𝐶)
fnopabco.2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
fnopabco.3 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐻𝐵))}
Assertion
Ref Expression
fnopabco (𝐻 Fn 𝐶𝐺 = (𝐻𝐹))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑦,𝐵   𝑥,𝐻,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fnopabco
StepHypRef Expression
1 fnopabco.3 . . 3 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐻𝐵))}
2 df-mpt 5232 . . 3 (𝑥𝐴 ↦ (𝐻𝐵)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐻𝐵))}
31, 2eqtr4i 2763 . 2 𝐺 = (𝑥𝐴 ↦ (𝐻𝐵))
4 fnopabco.1 . . . 4 (𝑥𝐴𝐵𝐶)
54adantl 482 . . 3 ((𝐻 Fn 𝐶𝑥𝐴) → 𝐵𝐶)
6 fnopabco.2 . . . . 5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
7 df-mpt 5232 . . . . 5 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
86, 7eqtr4i 2763 . . . 4 𝐹 = (𝑥𝐴𝐵)
98a1i 11 . . 3 (𝐻 Fn 𝐶𝐹 = (𝑥𝐴𝐵))
10 dffn5 6950 . . . 4 (𝐻 Fn 𝐶𝐻 = (𝑦𝐶 ↦ (𝐻𝑦)))
1110biimpi 215 . . 3 (𝐻 Fn 𝐶𝐻 = (𝑦𝐶 ↦ (𝐻𝑦)))
12 fveq2 6891 . . 3 (𝑦 = 𝐵 → (𝐻𝑦) = (𝐻𝐵))
135, 9, 11, 12fmptco 7126 . 2 (𝐻 Fn 𝐶 → (𝐻𝐹) = (𝑥𝐴 ↦ (𝐻𝐵)))
143, 13eqtr4id 2791 1 (𝐻 Fn 𝐶𝐺 = (𝐻𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {copab 5210  cmpt 5231  ccom 5680   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551
This theorem is referenced by:  opropabco  36587
  Copyright terms: Public domain W3C validator