MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprssov Structured version   Visualization version   GIF version

Theorem oprssov 7297
Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.)
Assertion
Ref Expression
oprssov (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))

Proof of Theorem oprssov
StepHypRef Expression
1 ovres 7294 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
21adantl 485 . 2 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
3 fndm 6425 . . . . . . 7 (𝐺 Fn (𝐶 × 𝐷) → dom 𝐺 = (𝐶 × 𝐷))
43reseq2d 5818 . . . . . 6 (𝐺 Fn (𝐶 × 𝐷) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷)))
543ad2ant2 1131 . . . . 5 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷)))
6 funssres 6368 . . . . . 6 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
763adant2 1128 . . . . 5 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
85, 7eqtr3d 2835 . . . 4 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ (𝐶 × 𝐷)) = 𝐺)
98oveqd 7152 . . 3 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵))
109adantr 484 . 2 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵))
112, 10eqtr3d 2835 1 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wss 3881   × cxp 5517  dom cdm 5519  cres 5521  Fun wfun 6318   Fn wfn 6319  (class class class)co 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-res 5531  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332  df-ov 7138
This theorem is referenced by:  sspg  28511  ssps  28513
  Copyright terms: Public domain W3C validator