| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oprssov | Structured version Visualization version GIF version | ||
| Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.) |
| Ref | Expression |
|---|---|
| oprssov | ⊢ (((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovres 7518 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) | |
| 2 | 1 | adantl 481 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
| 3 | fndm 6589 | . . . . . . 7 ⊢ (𝐺 Fn (𝐶 × 𝐷) → dom 𝐺 = (𝐶 × 𝐷)) | |
| 4 | 3 | reseq2d 5932 | . . . . . 6 ⊢ (𝐺 Fn (𝐶 × 𝐷) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷))) |
| 5 | 4 | 3ad2ant2 1134 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷))) |
| 6 | funssres 6530 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
| 7 | 6 | 3adant2 1131 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) |
| 8 | 5, 7 | eqtr3d 2770 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ (𝐶 × 𝐷)) = 𝐺) |
| 9 | 8 | oveqd 7369 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵)) |
| 10 | 9 | adantr 480 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵)) |
| 11 | 2, 10 | eqtr3d 2770 | 1 ⊢ (((Fun 𝐹 ∧ 𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺 ⊆ 𝐹) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 × cxp 5617 dom cdm 5619 ↾ cres 5621 Fun wfun 6480 Fn wfn 6481 (class class class)co 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: sspg 30710 ssps 30712 |
| Copyright terms: Public domain | W3C validator |