MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprssov Structured version   Visualization version   GIF version

Theorem oprssov 7522
Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.)
Assertion
Ref Expression
oprssov (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))

Proof of Theorem oprssov
StepHypRef Expression
1 ovres 7519 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
21adantl 481 . 2 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
3 fndm 6589 . . . . . . 7 (𝐺 Fn (𝐶 × 𝐷) → dom 𝐺 = (𝐶 × 𝐷))
43reseq2d 5934 . . . . . 6 (𝐺 Fn (𝐶 × 𝐷) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷)))
543ad2ant2 1134 . . . . 5 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷)))
6 funssres 6530 . . . . . 6 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
763adant2 1131 . . . . 5 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
85, 7eqtr3d 2766 . . . 4 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ (𝐶 × 𝐷)) = 𝐺)
98oveqd 7370 . . 3 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵))
109adantr 480 . 2 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵))
112, 10eqtr3d 2766 1 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3905   × cxp 5621  dom cdm 5623  cres 5625  Fun wfun 6480   Fn wfn 6481  (class class class)co 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-ov 7356
This theorem is referenced by:  sspg  30690  ssps  30692
  Copyright terms: Public domain W3C validator