MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprssov Structured version   Visualization version   GIF version

Theorem oprssov 7619
Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.)
Assertion
Ref Expression
oprssov (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))

Proof of Theorem oprssov
StepHypRef Expression
1 ovres 7616 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
21adantl 481 . 2 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
3 fndm 6682 . . . . . . 7 (𝐺 Fn (𝐶 × 𝐷) → dom 𝐺 = (𝐶 × 𝐷))
43reseq2d 6009 . . . . . 6 (𝐺 Fn (𝐶 × 𝐷) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷)))
543ad2ant2 1134 . . . . 5 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ dom 𝐺) = (𝐹 ↾ (𝐶 × 𝐷)))
6 funssres 6622 . . . . . 6 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
763adant2 1131 . . . . 5 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
85, 7eqtr3d 2782 . . . 4 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐹 ↾ (𝐶 × 𝐷)) = 𝐺)
98oveqd 7465 . . 3 ((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵))
109adantr 480 . 2 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐺𝐵))
112, 10eqtr3d 2782 1 (((Fun 𝐹𝐺 Fn (𝐶 × 𝐷) ∧ 𝐺𝐹) ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) = (𝐴𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976   × cxp 5698  dom cdm 5700  cres 5702  Fun wfun 6567   Fn wfn 6568  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-ov 7451
This theorem is referenced by:  sspg  30760  ssps  30762
  Copyright terms: Public domain W3C validator