MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprres Structured version   Visualization version   GIF version

Theorem oprres 7418
Description: The restriction of an operation is an operation. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 19-Oct-2021.)
Hypotheses
Ref Expression
oprres.v ((𝜑𝑥𝑌𝑦𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
oprres.s (𝜑𝑌𝑋)
oprres.f (𝜑𝐹:(𝑌 × 𝑌)⟶𝑅)
oprres.g (𝜑𝐺:(𝑋 × 𝑋)⟶𝑆)
Assertion
Ref Expression
oprres (𝜑𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem oprres
StepHypRef Expression
1 oprres.v . . . . . 6 ((𝜑𝑥𝑌𝑦𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
213expb 1118 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
3 ovres 7416 . . . . . 6 ((𝑥𝑌𝑦𝑌) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦))
43adantl 481 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦))
52, 4eqtr4d 2781 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
65ralrimivva 3114 . . 3 (𝜑 → ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
7 eqid 2738 . . 3 (𝑌 × 𝑌) = (𝑌 × 𝑌)
86, 7jctil 519 . 2 (𝜑 → ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))
9 oprres.f . . . 4 (𝜑𝐹:(𝑌 × 𝑌)⟶𝑅)
109ffnd 6585 . . 3 (𝜑𝐹 Fn (𝑌 × 𝑌))
11 oprres.g . . . . 5 (𝜑𝐺:(𝑋 × 𝑋)⟶𝑆)
1211ffnd 6585 . . . 4 (𝜑𝐺 Fn (𝑋 × 𝑋))
13 oprres.s . . . . 5 (𝜑𝑌𝑋)
14 xpss12 5595 . . . . 5 ((𝑌𝑋𝑌𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1513, 13, 14syl2anc 583 . . . 4 (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
16 fnssres 6539 . . . 4 ((𝐺 Fn (𝑋 × 𝑋) ∧ (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
1712, 15, 16syl2anc 583 . . 3 (𝜑 → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
18 eqfnov 7381 . . 3 ((𝐹 Fn (𝑌 × 𝑌) ∧ (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
1910, 17, 18syl2anc 583 . 2 (𝜑 → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
208, 19mpbird 256 1 (𝜑𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883   × cxp 5578  cres 5582   Fn wfn 6413  wf 6414  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258
This theorem is referenced by:  subresre  40333
  Copyright terms: Public domain W3C validator