Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oprres | Structured version Visualization version GIF version |
Description: The restriction of an operation is an operation. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 19-Oct-2021.) |
Ref | Expression |
---|---|
oprres.v | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
oprres.s | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
oprres.f | ⊢ (𝜑 → 𝐹:(𝑌 × 𝑌)⟶𝑅) |
oprres.g | ⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)⟶𝑆) |
Ref | Expression |
---|---|
oprres | ⊢ (𝜑 → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprres.v | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) | |
2 | 1 | 3expb 1121 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
3 | ovres 7333 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦)) | |
4 | 3 | adantl 485 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦)) |
5 | 2, 4 | eqtr4d 2777 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)) |
6 | 5 | ralrimivva 3104 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)) |
7 | eqid 2739 | . . 3 ⊢ (𝑌 × 𝑌) = (𝑌 × 𝑌) | |
8 | 6, 7 | jctil 523 | . 2 ⊢ (𝜑 → ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))) |
9 | oprres.f | . . . 4 ⊢ (𝜑 → 𝐹:(𝑌 × 𝑌)⟶𝑅) | |
10 | 9 | ffnd 6506 | . . 3 ⊢ (𝜑 → 𝐹 Fn (𝑌 × 𝑌)) |
11 | oprres.g | . . . . 5 ⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)⟶𝑆) | |
12 | 11 | ffnd 6506 | . . . 4 ⊢ (𝜑 → 𝐺 Fn (𝑋 × 𝑋)) |
13 | oprres.s | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
14 | xpss12 5541 | . . . . 5 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) | |
15 | 13, 13, 14 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) |
16 | fnssres 6460 | . . . 4 ⊢ ((𝐺 Fn (𝑋 × 𝑋) ∧ (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) | |
17 | 12, 15, 16 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) |
18 | eqfnov 7298 | . . 3 ⊢ ((𝐹 Fn (𝑌 × 𝑌) ∧ (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))) | |
19 | 10, 17, 18 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))) |
20 | 8, 19 | mpbird 260 | 1 ⊢ (𝜑 → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ⊆ wss 3844 × cxp 5524 ↾ cres 5528 Fn wfn 6335 ⟶wf 6336 (class class class)co 7173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-ov 7176 |
This theorem is referenced by: subresre 40012 |
Copyright terms: Public domain | W3C validator |