![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oprres | Structured version Visualization version GIF version |
Description: The restriction of an operation is an operation. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 19-Oct-2021.) |
Ref | Expression |
---|---|
oprres.v | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
oprres.s | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
oprres.f | ⊢ (𝜑 → 𝐹:(𝑌 × 𝑌)⟶𝑅) |
oprres.g | ⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)⟶𝑆) |
Ref | Expression |
---|---|
oprres | ⊢ (𝜑 → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprres.v | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) | |
2 | 1 | 3expb 1117 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
3 | ovres 7567 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦)) | |
4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦)) |
5 | 2, 4 | eqtr4d 2767 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)) |
6 | 5 | ralrimivva 3192 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)) |
7 | eqid 2724 | . . 3 ⊢ (𝑌 × 𝑌) = (𝑌 × 𝑌) | |
8 | 6, 7 | jctil 519 | . 2 ⊢ (𝜑 → ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))) |
9 | oprres.f | . . . 4 ⊢ (𝜑 → 𝐹:(𝑌 × 𝑌)⟶𝑅) | |
10 | 9 | ffnd 6709 | . . 3 ⊢ (𝜑 → 𝐹 Fn (𝑌 × 𝑌)) |
11 | oprres.g | . . . . 5 ⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)⟶𝑆) | |
12 | 11 | ffnd 6709 | . . . 4 ⊢ (𝜑 → 𝐺 Fn (𝑋 × 𝑋)) |
13 | oprres.s | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
14 | xpss12 5682 | . . . . 5 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) | |
15 | 13, 13, 14 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) |
16 | fnssres 6664 | . . . 4 ⊢ ((𝐺 Fn (𝑋 × 𝑋) ∧ (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) | |
17 | 12, 15, 16 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) |
18 | eqfnov 7531 | . . 3 ⊢ ((𝐹 Fn (𝑌 × 𝑌) ∧ (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))) | |
19 | 10, 17, 18 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))) |
20 | 8, 19 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ⊆ wss 3941 × cxp 5665 ↾ cres 5669 Fn wfn 6529 ⟶wf 6530 (class class class)co 7402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-ov 7405 |
This theorem is referenced by: subresre 41855 |
Copyright terms: Public domain | W3C validator |