MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprres Structured version   Visualization version   GIF version

Theorem oprres 7569
Description: The restriction of an operation is an operation. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 19-Oct-2021.)
Hypotheses
Ref Expression
oprres.v ((𝜑𝑥𝑌𝑦𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
oprres.s (𝜑𝑌𝑋)
oprres.f (𝜑𝐹:(𝑌 × 𝑌)⟶𝑅)
oprres.g (𝜑𝐺:(𝑋 × 𝑋)⟶𝑆)
Assertion
Ref Expression
oprres (𝜑𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem oprres
StepHypRef Expression
1 oprres.v . . . . . 6 ((𝜑𝑥𝑌𝑦𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
213expb 1117 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
3 ovres 7567 . . . . . 6 ((𝑥𝑌𝑦𝑌) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦))
43adantl 481 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦))
52, 4eqtr4d 2767 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
65ralrimivva 3192 . . 3 (𝜑 → ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))
7 eqid 2724 . . 3 (𝑌 × 𝑌) = (𝑌 × 𝑌)
86, 7jctil 519 . 2 (𝜑 → ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))
9 oprres.f . . . 4 (𝜑𝐹:(𝑌 × 𝑌)⟶𝑅)
109ffnd 6709 . . 3 (𝜑𝐹 Fn (𝑌 × 𝑌))
11 oprres.g . . . . 5 (𝜑𝐺:(𝑋 × 𝑋)⟶𝑆)
1211ffnd 6709 . . . 4 (𝜑𝐺 Fn (𝑋 × 𝑋))
13 oprres.s . . . . 5 (𝜑𝑌𝑋)
14 xpss12 5682 . . . . 5 ((𝑌𝑋𝑌𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1513, 13, 14syl2anc 583 . . . 4 (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
16 fnssres 6664 . . . 4 ((𝐺 Fn (𝑋 × 𝑋) ∧ (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
1712, 15, 16syl2anc 583 . . 3 (𝜑 → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌))
18 eqfnov 7531 . . 3 ((𝐹 Fn (𝑌 × 𝑌) ∧ (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
1910, 17, 18syl2anc 583 . 2 (𝜑 → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥𝑌𝑦𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))))
208, 19mpbird 257 1 (𝜑𝐹 = (𝐺 ↾ (𝑌 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  wss 3941   × cxp 5665  cres 5669   Fn wfn 6529  wf 6530  (class class class)co 7402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-ov 7405
This theorem is referenced by:  subresre  41855
  Copyright terms: Public domain W3C validator