Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oprres | Structured version Visualization version GIF version |
Description: The restriction of an operation is an operation. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 19-Oct-2021.) |
Ref | Expression |
---|---|
oprres.v | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
oprres.s | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
oprres.f | ⊢ (𝜑 → 𝐹:(𝑌 × 𝑌)⟶𝑅) |
oprres.g | ⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)⟶𝑆) |
Ref | Expression |
---|---|
oprres | ⊢ (𝜑 → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprres.v | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) | |
2 | 1 | 3expb 1119 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
3 | ovres 7438 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦)) | |
4 | 3 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦)) |
5 | 2, 4 | eqtr4d 2781 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)) |
6 | 5 | ralrimivva 3123 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)) |
7 | eqid 2738 | . . 3 ⊢ (𝑌 × 𝑌) = (𝑌 × 𝑌) | |
8 | 6, 7 | jctil 520 | . 2 ⊢ (𝜑 → ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))) |
9 | oprres.f | . . . 4 ⊢ (𝜑 → 𝐹:(𝑌 × 𝑌)⟶𝑅) | |
10 | 9 | ffnd 6601 | . . 3 ⊢ (𝜑 → 𝐹 Fn (𝑌 × 𝑌)) |
11 | oprres.g | . . . . 5 ⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)⟶𝑆) | |
12 | 11 | ffnd 6601 | . . . 4 ⊢ (𝜑 → 𝐺 Fn (𝑋 × 𝑋)) |
13 | oprres.s | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
14 | xpss12 5604 | . . . . 5 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) | |
15 | 13, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) |
16 | fnssres 6555 | . . . 4 ⊢ ((𝐺 Fn (𝑋 × 𝑋) ∧ (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) | |
17 | 12, 15, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) |
18 | eqfnov 7403 | . . 3 ⊢ ((𝐹 Fn (𝑌 × 𝑌) ∧ (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))) | |
19 | 10, 17, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))) |
20 | 8, 19 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 × cxp 5587 ↾ cres 5591 Fn wfn 6428 ⟶wf 6429 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 |
This theorem is referenced by: subresre 40412 |
Copyright terms: Public domain | W3C validator |