| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oprres | Structured version Visualization version GIF version | ||
| Description: The restriction of an operation is an operation. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 19-Oct-2021.) |
| Ref | Expression |
|---|---|
| oprres.v | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| oprres.s | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| oprres.f | ⊢ (𝜑 → 𝐹:(𝑌 × 𝑌)⟶𝑅) |
| oprres.g | ⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)⟶𝑆) |
| Ref | Expression |
|---|---|
| oprres | ⊢ (𝜑 → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprres.v | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) | |
| 2 | 1 | 3expb 1120 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 3 | ovres 7555 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦)) | |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝐺𝑦)) |
| 5 | 2, 4 | eqtr4d 2767 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)) |
| 6 | 5 | ralrimivva 3180 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)) |
| 7 | eqid 2729 | . . 3 ⊢ (𝑌 × 𝑌) = (𝑌 × 𝑌) | |
| 8 | 6, 7 | jctil 519 | . 2 ⊢ (𝜑 → ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦))) |
| 9 | oprres.f | . . . 4 ⊢ (𝜑 → 𝐹:(𝑌 × 𝑌)⟶𝑅) | |
| 10 | 9 | ffnd 6689 | . . 3 ⊢ (𝜑 → 𝐹 Fn (𝑌 × 𝑌)) |
| 11 | oprres.g | . . . . 5 ⊢ (𝜑 → 𝐺:(𝑋 × 𝑋)⟶𝑆) | |
| 12 | 11 | ffnd 6689 | . . . 4 ⊢ (𝜑 → 𝐺 Fn (𝑋 × 𝑋)) |
| 13 | oprres.s | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 14 | xpss12 5653 | . . . . 5 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) | |
| 15 | 13, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) |
| 16 | fnssres 6641 | . . . 4 ⊢ ((𝐺 Fn (𝑋 × 𝑋) ∧ (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) | |
| 17 | 12, 15, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) |
| 18 | eqfnov 7518 | . . 3 ⊢ ((𝐹 Fn (𝑌 × 𝑌) ∧ (𝐺 ↾ (𝑌 × 𝑌)) Fn (𝑌 × 𝑌)) → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))) | |
| 19 | 10, 17, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 = (𝐺 ↾ (𝑌 × 𝑌)) ↔ ((𝑌 × 𝑌) = (𝑌 × 𝑌) ∧ ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑥𝐹𝑦) = (𝑥(𝐺 ↾ (𝑌 × 𝑌))𝑦)))) |
| 20 | 8, 19 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = (𝐺 ↾ (𝑌 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 × cxp 5636 ↾ cres 5640 Fn wfn 6506 ⟶wf 6507 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: subresre 42419 |
| Copyright terms: Public domain | W3C validator |