Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > opsqrlem3 | Structured version Visualization version GIF version |
Description: Lemma for opsqri . (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
opsqrlem2.1 | ⊢ 𝑇 ∈ HrmOp |
opsqrlem2.2 | ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) |
opsqrlem2.3 | ⊢ 𝐹 = seq1(𝑆, (ℕ × { 0hop })) |
Ref | Expression |
---|---|
opsqrlem3 | ⊢ ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑧 = 𝐺 → 𝑧 = 𝐺) | |
2 | 1, 1 | coeq12d 5762 | . . . . 5 ⊢ (𝑧 = 𝐺 → (𝑧 ∘ 𝑧) = (𝐺 ∘ 𝐺)) |
3 | 2 | oveq2d 7271 | . . . 4 ⊢ (𝑧 = 𝐺 → (𝑇 −op (𝑧 ∘ 𝑧)) = (𝑇 −op (𝐺 ∘ 𝐺))) |
4 | 3 | oveq2d 7271 | . . 3 ⊢ (𝑧 = 𝐺 → ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))) = ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) |
5 | 1, 4 | oveq12d 7273 | . 2 ⊢ (𝑧 = 𝐺 → (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) |
6 | eqidd 2739 | . 2 ⊢ (𝑤 = 𝐻 → (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) | |
7 | opsqrlem2.2 | . . 3 ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) | |
8 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
9 | 8, 8 | coeq12d 5762 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 ∘ 𝑥) = (𝑧 ∘ 𝑧)) |
10 | 9 | oveq2d 7271 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑇 −op (𝑥 ∘ 𝑥)) = (𝑇 −op (𝑧 ∘ 𝑧))) |
11 | 10 | oveq2d 7271 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))) = ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) |
12 | 8, 11 | oveq12d 7273 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥)))) = (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
13 | eqidd 2739 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) = (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) | |
14 | 12, 13 | cbvmpov 7348 | . . 3 ⊢ (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
15 | 7, 14 | eqtri 2766 | . 2 ⊢ 𝑆 = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
16 | ovex 7288 | . 2 ⊢ (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) ∈ V | |
17 | 5, 6, 15, 16 | ovmpo 7411 | 1 ⊢ ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 × cxp 5578 ∘ ccom 5584 (class class class)co 7255 ∈ cmpo 7257 1c1 10803 / cdiv 11562 ℕcn 11903 2c2 11958 seqcseq 13649 +op chos 29201 ·op chot 29202 −op chod 29203 0hop ch0o 29206 HrmOpcho 29213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: opsqrlem4 30406 opsqrlem5 30407 |
Copyright terms: Public domain | W3C validator |