HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem3 Structured version   Visualization version   GIF version

Theorem opsqrlem3 30504
Description: Lemma for opsqri . (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem2.1 𝑇 ∈ HrmOp
opsqrlem2.2 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
opsqrlem2.3 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
Assertion
Ref Expression
opsqrlem3 ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇op (𝐺𝐺)))))
Distinct variable group:   𝑥,𝑦,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem opsqrlem3
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑧 = 𝐺𝑧 = 𝐺)
21, 1coeq12d 5773 . . . . 5 (𝑧 = 𝐺 → (𝑧𝑧) = (𝐺𝐺))
32oveq2d 7291 . . . 4 (𝑧 = 𝐺 → (𝑇op (𝑧𝑧)) = (𝑇op (𝐺𝐺)))
43oveq2d 7291 . . 3 (𝑧 = 𝐺 → ((1 / 2) ·op (𝑇op (𝑧𝑧))) = ((1 / 2) ·op (𝑇op (𝐺𝐺))))
51, 4oveq12d 7293 . 2 (𝑧 = 𝐺 → (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))) = (𝐺 +op ((1 / 2) ·op (𝑇op (𝐺𝐺)))))
6 eqidd 2739 . 2 (𝑤 = 𝐻 → (𝐺 +op ((1 / 2) ·op (𝑇op (𝐺𝐺)))) = (𝐺 +op ((1 / 2) ·op (𝑇op (𝐺𝐺)))))
7 opsqrlem2.2 . . 3 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
8 id 22 . . . . 5 (𝑥 = 𝑧𝑥 = 𝑧)
98, 8coeq12d 5773 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑥) = (𝑧𝑧))
109oveq2d 7291 . . . . . 6 (𝑥 = 𝑧 → (𝑇op (𝑥𝑥)) = (𝑇op (𝑧𝑧)))
1110oveq2d 7291 . . . . 5 (𝑥 = 𝑧 → ((1 / 2) ·op (𝑇op (𝑥𝑥))) = ((1 / 2) ·op (𝑇op (𝑧𝑧))))
128, 11oveq12d 7293 . . . 4 (𝑥 = 𝑧 → (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))) = (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))))
13 eqidd 2739 . . . 4 (𝑦 = 𝑤 → (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))) = (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))))
1412, 13cbvmpov 7370 . . 3 (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥))))) = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))))
157, 14eqtri 2766 . 2 𝑆 = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))))
16 ovex 7308 . 2 (𝐺 +op ((1 / 2) ·op (𝑇op (𝐺𝐺)))) ∈ V
175, 6, 15, 16ovmpo 7433 1 ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇op (𝐺𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4561   × cxp 5587  ccom 5593  (class class class)co 7275  cmpo 7277  1c1 10872   / cdiv 11632  cn 11973  2c2 12028  seqcseq 13721   +op chos 29300   ·op chot 29301  op chod 29302   0hop ch0o 29305  HrmOpcho 29312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280
This theorem is referenced by:  opsqrlem4  30505  opsqrlem5  30506
  Copyright terms: Public domain W3C validator