![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > opsqrlem3 | Structured version Visualization version GIF version |
Description: Lemma for opsqri . (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
opsqrlem2.1 | ⊢ 𝑇 ∈ HrmOp |
opsqrlem2.2 | ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) |
opsqrlem2.3 | ⊢ 𝐹 = seq1(𝑆, (ℕ × { 0hop })) |
Ref | Expression |
---|---|
opsqrlem3 | ⊢ ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑧 = 𝐺 → 𝑧 = 𝐺) | |
2 | 1, 1 | coeq12d 5858 | . . . . 5 ⊢ (𝑧 = 𝐺 → (𝑧 ∘ 𝑧) = (𝐺 ∘ 𝐺)) |
3 | 2 | oveq2d 7421 | . . . 4 ⊢ (𝑧 = 𝐺 → (𝑇 −op (𝑧 ∘ 𝑧)) = (𝑇 −op (𝐺 ∘ 𝐺))) |
4 | 3 | oveq2d 7421 | . . 3 ⊢ (𝑧 = 𝐺 → ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))) = ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) |
5 | 1, 4 | oveq12d 7423 | . 2 ⊢ (𝑧 = 𝐺 → (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) |
6 | eqidd 2727 | . 2 ⊢ (𝑤 = 𝐻 → (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) | |
7 | opsqrlem2.2 | . . 3 ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) | |
8 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
9 | 8, 8 | coeq12d 5858 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 ∘ 𝑥) = (𝑧 ∘ 𝑧)) |
10 | 9 | oveq2d 7421 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑇 −op (𝑥 ∘ 𝑥)) = (𝑇 −op (𝑧 ∘ 𝑧))) |
11 | 10 | oveq2d 7421 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))) = ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) |
12 | 8, 11 | oveq12d 7423 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥)))) = (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
13 | eqidd 2727 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) = (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) | |
14 | 12, 13 | cbvmpov 7500 | . . 3 ⊢ (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
15 | 7, 14 | eqtri 2754 | . 2 ⊢ 𝑆 = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
16 | ovex 7438 | . 2 ⊢ (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) ∈ V | |
17 | 5, 6, 15, 16 | ovmpo 7564 | 1 ⊢ ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {csn 4623 × cxp 5667 ∘ ccom 5673 (class class class)co 7405 ∈ cmpo 7407 1c1 11113 / cdiv 11875 ℕcn 12216 2c2 12271 seqcseq 13972 +op chos 30700 ·op chot 30701 −op chod 30702 0hop ch0o 30705 HrmOpcho 30712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6489 df-fun 6539 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 |
This theorem is referenced by: opsqrlem4 31905 opsqrlem5 31906 |
Copyright terms: Public domain | W3C validator |