|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > opsqrlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for opsqri . (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| opsqrlem2.1 | ⊢ 𝑇 ∈ HrmOp | 
| opsqrlem2.2 | ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) | 
| opsqrlem2.3 | ⊢ 𝐹 = seq1(𝑆, (ℕ × { 0hop })) | 
| Ref | Expression | 
|---|---|
| opsqrlem3 | ⊢ ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑧 = 𝐺 → 𝑧 = 𝐺) | |
| 2 | 1, 1 | coeq12d 5874 | . . . . 5 ⊢ (𝑧 = 𝐺 → (𝑧 ∘ 𝑧) = (𝐺 ∘ 𝐺)) | 
| 3 | 2 | oveq2d 7448 | . . . 4 ⊢ (𝑧 = 𝐺 → (𝑇 −op (𝑧 ∘ 𝑧)) = (𝑇 −op (𝐺 ∘ 𝐺))) | 
| 4 | 3 | oveq2d 7448 | . . 3 ⊢ (𝑧 = 𝐺 → ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))) = ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) | 
| 5 | 1, 4 | oveq12d 7450 | . 2 ⊢ (𝑧 = 𝐺 → (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) | 
| 6 | eqidd 2737 | . 2 ⊢ (𝑤 = 𝐻 → (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) | |
| 7 | opsqrlem2.2 | . . 3 ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) | |
| 8 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
| 9 | 8, 8 | coeq12d 5874 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 ∘ 𝑥) = (𝑧 ∘ 𝑧)) | 
| 10 | 9 | oveq2d 7448 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑇 −op (𝑥 ∘ 𝑥)) = (𝑇 −op (𝑧 ∘ 𝑧))) | 
| 11 | 10 | oveq2d 7448 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))) = ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) | 
| 12 | 8, 11 | oveq12d 7450 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥)))) = (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) | 
| 13 | eqidd 2737 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) = (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) | |
| 14 | 12, 13 | cbvmpov 7529 | . . 3 ⊢ (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) | 
| 15 | 7, 14 | eqtri 2764 | . 2 ⊢ 𝑆 = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) | 
| 16 | ovex 7465 | . 2 ⊢ (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) ∈ V | |
| 17 | 5, 6, 15, 16 | ovmpo 7594 | 1 ⊢ ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4625 × cxp 5682 ∘ ccom 5688 (class class class)co 7432 ∈ cmpo 7434 1c1 11157 / cdiv 11921 ℕcn 12267 2c2 12322 seqcseq 14043 +op chos 30958 ·op chot 30959 −op chod 30960 0hop ch0o 30963 HrmOpcho 30970 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 | 
| This theorem is referenced by: opsqrlem4 32163 opsqrlem5 32164 | 
| Copyright terms: Public domain | W3C validator |