![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > opsqrlem5 | Structured version Visualization version GIF version |
Description: Lemma for opsqri . (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
opsqrlem2.1 | ⊢ 𝑇 ∈ HrmOp |
opsqrlem2.2 | ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) |
opsqrlem2.3 | ⊢ 𝐹 = seq1(𝑆, (ℕ × { 0hop })) |
Ref | Expression |
---|---|
opsqrlem5 | ⊢ (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) = ((𝐹‘𝑁) +op ((1 / 2) ·op (𝑇 −op ((𝐹‘𝑁) ∘ (𝐹‘𝑁)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnnuz 12005 | . . . 4 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
2 | seqp1 13109 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘1) → (seq1(𝑆, (ℕ × { 0hop }))‘(𝑁 + 1)) = ((seq1(𝑆, (ℕ × { 0hop }))‘𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1)))) | |
3 | 1, 2 | sylbi 209 | . . 3 ⊢ (𝑁 ∈ ℕ → (seq1(𝑆, (ℕ × { 0hop }))‘(𝑁 + 1)) = ((seq1(𝑆, (ℕ × { 0hop }))‘𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1)))) |
4 | opsqrlem2.3 | . . . 4 ⊢ 𝐹 = seq1(𝑆, (ℕ × { 0hop })) | |
5 | 4 | fveq1i 6433 | . . 3 ⊢ (𝐹‘(𝑁 + 1)) = (seq1(𝑆, (ℕ × { 0hop }))‘(𝑁 + 1)) |
6 | 4 | fveq1i 6433 | . . . 4 ⊢ (𝐹‘𝑁) = (seq1(𝑆, (ℕ × { 0hop }))‘𝑁) |
7 | 6 | oveq1i 6914 | . . 3 ⊢ ((𝐹‘𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1))) = ((seq1(𝑆, (ℕ × { 0hop }))‘𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1))) |
8 | 3, 5, 7 | 3eqtr4g 2885 | . 2 ⊢ (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) = ((𝐹‘𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1)))) |
9 | opsqrlem2.1 | . . . . 5 ⊢ 𝑇 ∈ HrmOp | |
10 | opsqrlem2.2 | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) | |
11 | 9, 10, 4 | opsqrlem4 29556 | . . . 4 ⊢ 𝐹:ℕ⟶HrmOp |
12 | 11 | ffvelrni 6606 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐹‘𝑁) ∈ HrmOp) |
13 | peano2nn 11363 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
14 | 0hmop 29396 | . . . . . . 7 ⊢ 0hop ∈ HrmOp | |
15 | 14 | elexi 3429 | . . . . . 6 ⊢ 0hop ∈ V |
16 | 15 | fvconst2 6724 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ → ((ℕ × { 0hop })‘(𝑁 + 1)) = 0hop ) |
17 | 13, 16 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((ℕ × { 0hop })‘(𝑁 + 1)) = 0hop ) |
18 | 17, 14 | syl6eqel 2913 | . . 3 ⊢ (𝑁 ∈ ℕ → ((ℕ × { 0hop })‘(𝑁 + 1)) ∈ HrmOp) |
19 | 9, 10, 4 | opsqrlem3 29555 | . . 3 ⊢ (((𝐹‘𝑁) ∈ HrmOp ∧ ((ℕ × { 0hop })‘(𝑁 + 1)) ∈ HrmOp) → ((𝐹‘𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1))) = ((𝐹‘𝑁) +op ((1 / 2) ·op (𝑇 −op ((𝐹‘𝑁) ∘ (𝐹‘𝑁)))))) |
20 | 12, 18, 19 | syl2anc 581 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐹‘𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1))) = ((𝐹‘𝑁) +op ((1 / 2) ·op (𝑇 −op ((𝐹‘𝑁) ∘ (𝐹‘𝑁)))))) |
21 | 8, 20 | eqtrd 2860 | 1 ⊢ (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) = ((𝐹‘𝑁) +op ((1 / 2) ·op (𝑇 −op ((𝐹‘𝑁) ∘ (𝐹‘𝑁)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 {csn 4396 × cxp 5339 ∘ ccom 5345 ‘cfv 6122 (class class class)co 6904 ↦ cmpt2 6906 1c1 10252 + caddc 10254 / cdiv 11008 ℕcn 11349 2c2 11405 ℤ≥cuz 11967 seqcseq 13094 +op chos 28349 ·op chot 28350 −op chod 28351 0hop ch0o 28354 HrmOpcho 28361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-inf2 8814 ax-cc 9571 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 ax-pre-sup 10329 ax-addf 10330 ax-mulf 10331 ax-hilex 28410 ax-hfvadd 28411 ax-hvcom 28412 ax-hvass 28413 ax-hv0cl 28414 ax-hvaddid 28415 ax-hfvmul 28416 ax-hvmulid 28417 ax-hvmulass 28418 ax-hvdistr1 28419 ax-hvdistr2 28420 ax-hvmul0 28421 ax-hfi 28490 ax-his1 28493 ax-his2 28494 ax-his3 28495 ax-his4 28496 ax-hcompl 28613 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-iin 4742 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-se 5301 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-isom 6131 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-of 7156 df-om 7326 df-1st 7427 df-2nd 7428 df-supp 7559 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-2o 7826 df-oadd 7829 df-omul 7830 df-er 8008 df-map 8123 df-pm 8124 df-ixp 8175 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-fsupp 8544 df-fi 8585 df-sup 8616 df-inf 8617 df-oi 8683 df-card 9077 df-acn 9080 df-cda 9304 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-div 11009 df-nn 11350 df-2 11413 df-3 11414 df-4 11415 df-5 11416 df-6 11417 df-7 11418 df-8 11419 df-9 11420 df-n0 11618 df-z 11704 df-dec 11821 df-uz 11968 df-q 12071 df-rp 12112 df-xneg 12231 df-xadd 12232 df-xmul 12233 df-ioo 12466 df-ico 12468 df-icc 12469 df-fz 12619 df-fzo 12760 df-fl 12887 df-seq 13095 df-exp 13154 df-hash 13410 df-cj 14215 df-re 14216 df-im 14217 df-sqrt 14351 df-abs 14352 df-clim 14595 df-rlim 14596 df-sum 14793 df-struct 16223 df-ndx 16224 df-slot 16225 df-base 16227 df-sets 16228 df-ress 16229 df-plusg 16317 df-mulr 16318 df-starv 16319 df-sca 16320 df-vsca 16321 df-ip 16322 df-tset 16323 df-ple 16324 df-ds 16326 df-unif 16327 df-hom 16328 df-cco 16329 df-rest 16435 df-topn 16436 df-0g 16454 df-gsum 16455 df-topgen 16456 df-pt 16457 df-prds 16460 df-xrs 16514 df-qtop 16519 df-imas 16520 df-xps 16522 df-mre 16598 df-mrc 16599 df-acs 16601 df-mgm 17594 df-sgrp 17636 df-mnd 17647 df-submnd 17688 df-mulg 17894 df-cntz 18099 df-cmn 18547 df-psmet 20097 df-xmet 20098 df-met 20099 df-bl 20100 df-mopn 20101 df-fbas 20102 df-fg 20103 df-cnfld 20106 df-top 21068 df-topon 21085 df-topsp 21107 df-bases 21120 df-cld 21193 df-ntr 21194 df-cls 21195 df-nei 21272 df-cn 21401 df-cnp 21402 df-lm 21403 df-haus 21489 df-tx 21735 df-hmeo 21928 df-fil 22019 df-fm 22111 df-flim 22112 df-flf 22113 df-xms 22494 df-ms 22495 df-tms 22496 df-cfil 23422 df-cau 23423 df-cmet 23424 df-grpo 27902 df-gid 27903 df-ginv 27904 df-gdiv 27905 df-ablo 27954 df-vc 27968 df-nv 28001 df-va 28004 df-ba 28005 df-sm 28006 df-0v 28007 df-vs 28008 df-nmcv 28009 df-ims 28010 df-dip 28110 df-ssp 28131 df-ph 28222 df-cbn 28273 df-hnorm 28379 df-hba 28380 df-hvsub 28382 df-hlim 28383 df-hcau 28384 df-sh 28618 df-ch 28632 df-oc 28663 df-ch0 28664 df-shs 28721 df-pjh 28808 df-hosum 29143 df-homul 29144 df-hodif 29145 df-h0op 29161 df-hmop 29257 |
This theorem is referenced by: opsqrlem6 29558 |
Copyright terms: Public domain | W3C validator |