HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem5 Structured version   Visualization version   GIF version

Theorem opsqrlem5 30503
Description: Lemma for opsqri . (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem2.1 𝑇 ∈ HrmOp
opsqrlem2.2 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
opsqrlem2.3 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
Assertion
Ref Expression
opsqrlem5 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) = ((𝐹𝑁) +op ((1 / 2) ·op (𝑇op ((𝐹𝑁) ∘ (𝐹𝑁))))))
Distinct variable group:   𝑥,𝑦,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem opsqrlem5
StepHypRef Expression
1 elnnuz 12620 . . . 4 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
2 seqp1 13734 . . . 4 (𝑁 ∈ (ℤ‘1) → (seq1(𝑆, (ℕ × { 0hop }))‘(𝑁 + 1)) = ((seq1(𝑆, (ℕ × { 0hop }))‘𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1))))
31, 2sylbi 216 . . 3 (𝑁 ∈ ℕ → (seq1(𝑆, (ℕ × { 0hop }))‘(𝑁 + 1)) = ((seq1(𝑆, (ℕ × { 0hop }))‘𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1))))
4 opsqrlem2.3 . . . 4 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
54fveq1i 6777 . . 3 (𝐹‘(𝑁 + 1)) = (seq1(𝑆, (ℕ × { 0hop }))‘(𝑁 + 1))
64fveq1i 6777 . . . 4 (𝐹𝑁) = (seq1(𝑆, (ℕ × { 0hop }))‘𝑁)
76oveq1i 7287 . . 3 ((𝐹𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1))) = ((seq1(𝑆, (ℕ × { 0hop }))‘𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1)))
83, 5, 73eqtr4g 2803 . 2 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) = ((𝐹𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1))))
9 opsqrlem2.1 . . . . 5 𝑇 ∈ HrmOp
10 opsqrlem2.2 . . . . 5 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
119, 10, 4opsqrlem4 30502 . . . 4 𝐹:ℕ⟶HrmOp
1211ffvelrni 6962 . . 3 (𝑁 ∈ ℕ → (𝐹𝑁) ∈ HrmOp)
13 peano2nn 11983 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
14 0hmop 30342 . . . . . . 7 0hop ∈ HrmOp
1514elexi 3450 . . . . . 6 0hop ∈ V
1615fvconst2 7081 . . . . 5 ((𝑁 + 1) ∈ ℕ → ((ℕ × { 0hop })‘(𝑁 + 1)) = 0hop )
1713, 16syl 17 . . . 4 (𝑁 ∈ ℕ → ((ℕ × { 0hop })‘(𝑁 + 1)) = 0hop )
1817, 14eqeltrdi 2847 . . 3 (𝑁 ∈ ℕ → ((ℕ × { 0hop })‘(𝑁 + 1)) ∈ HrmOp)
199, 10, 4opsqrlem3 30501 . . 3 (((𝐹𝑁) ∈ HrmOp ∧ ((ℕ × { 0hop })‘(𝑁 + 1)) ∈ HrmOp) → ((𝐹𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1))) = ((𝐹𝑁) +op ((1 / 2) ·op (𝑇op ((𝐹𝑁) ∘ (𝐹𝑁))))))
2012, 18, 19syl2anc 584 . 2 (𝑁 ∈ ℕ → ((𝐹𝑁)𝑆((ℕ × { 0hop })‘(𝑁 + 1))) = ((𝐹𝑁) +op ((1 / 2) ·op (𝑇op ((𝐹𝑁) ∘ (𝐹𝑁))))))
218, 20eqtrd 2778 1 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) = ((𝐹𝑁) +op ((1 / 2) ·op (𝑇op ((𝐹𝑁) ∘ (𝐹𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {csn 4563   × cxp 5589  ccom 5595  cfv 6435  (class class class)co 7277  cmpo 7279  1c1 10870   + caddc 10872   / cdiv 11630  cn 11971  2c2 12026  cuz 12580  seqcseq 13719   +op chos 29297   ·op chot 29298  op chod 29299   0hop ch0o 29302  HrmOpcho 29309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-inf2 9397  ax-cc 10189  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-pre-sup 10947  ax-addf 10948  ax-mulf 10949  ax-hilex 29358  ax-hfvadd 29359  ax-hvcom 29360  ax-hvass 29361  ax-hv0cl 29362  ax-hvaddid 29363  ax-hfvmul 29364  ax-hvmulid 29365  ax-hvmulass 29366  ax-hvdistr1 29367  ax-hvdistr2 29368  ax-hvmul0 29369  ax-hfi 29438  ax-his1 29441  ax-his2 29442  ax-his3 29443  ax-his4 29444  ax-hcompl 29561
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-isom 6444  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7976  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-2o 8296  df-oadd 8299  df-omul 8300  df-er 8496  df-map 8615  df-pm 8616  df-ixp 8684  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-fsupp 9127  df-fi 9168  df-sup 9199  df-inf 9200  df-oi 9267  df-card 9695  df-acn 9698  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12436  df-uz 12581  df-q 12687  df-rp 12729  df-xneg 12846  df-xadd 12847  df-xmul 12848  df-ioo 13081  df-ico 13083  df-icc 13084  df-fz 13238  df-fzo 13381  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-cn 22376  df-cnp 22377  df-lm 22378  df-haus 22464  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cfil 24417  df-cau 24418  df-cmet 24419  df-grpo 28852  df-gid 28853  df-ginv 28854  df-gdiv 28855  df-ablo 28904  df-vc 28918  df-nv 28951  df-va 28954  df-ba 28955  df-sm 28956  df-0v 28957  df-vs 28958  df-nmcv 28959  df-ims 28960  df-dip 29060  df-ssp 29081  df-ph 29172  df-cbn 29222  df-hnorm 29327  df-hba 29328  df-hvsub 29330  df-hlim 29331  df-hcau 29332  df-sh 29566  df-ch 29580  df-oc 29611  df-ch0 29612  df-shs 29667  df-pjh 29754  df-hosum 30089  df-homul 30090  df-hodif 30091  df-h0op 30107  df-hmop 30203
This theorem is referenced by:  opsqrlem6  30504
  Copyright terms: Public domain W3C validator