Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem4 Structured version   Visualization version   GIF version

Theorem opsqrlem4 30030
 Description: Lemma for opsqri . (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem2.1 𝑇 ∈ HrmOp
opsqrlem2.2 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
opsqrlem2.3 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
Assertion
Ref Expression
opsqrlem4 𝐹:ℕ⟶HrmOp
Distinct variable group:   𝑥,𝑦,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem opsqrlem4
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12326 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12057 . . . 4 (⊤ → 1 ∈ ℤ)
3 0hmop 29870 . . . . . . . 8 0hop ∈ HrmOp
43elexi 3429 . . . . . . 7 0hop ∈ V
54fvconst2 6962 . . . . . 6 (𝑧 ∈ ℕ → ((ℕ × { 0hop })‘𝑧) = 0hop )
65, 3eqeltrdi 2860 . . . . 5 (𝑧 ∈ ℕ → ((ℕ × { 0hop })‘𝑧) ∈ HrmOp)
76adantl 485 . . . 4 ((⊤ ∧ 𝑧 ∈ ℕ) → ((ℕ × { 0hop })‘𝑧) ∈ HrmOp)
8 opsqrlem2.1 . . . . . . 7 𝑇 ∈ HrmOp
9 opsqrlem2.2 . . . . . . 7 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇op (𝑥𝑥)))))
10 opsqrlem2.3 . . . . . . 7 𝐹 = seq1(𝑆, (ℕ × { 0hop }))
118, 9, 10opsqrlem3 30029 . . . . . 6 ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → (𝑧𝑆𝑤) = (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))))
12 halfre 11893 . . . . . . . 8 (1 / 2) ∈ ℝ
13 simpl 486 . . . . . . . . . 10 ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → 𝑧 ∈ HrmOp)
14 eqidd 2759 . . . . . . . . . 10 ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → (𝑧𝑧) = (𝑧𝑧))
15 hmopco 29910 . . . . . . . . . 10 ((𝑧 ∈ HrmOp ∧ 𝑧 ∈ HrmOp ∧ (𝑧𝑧) = (𝑧𝑧)) → (𝑧𝑧) ∈ HrmOp)
1613, 13, 14, 15syl3anc 1368 . . . . . . . . 9 ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → (𝑧𝑧) ∈ HrmOp)
17 hmopd 29909 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ (𝑧𝑧) ∈ HrmOp) → (𝑇op (𝑧𝑧)) ∈ HrmOp)
188, 16, 17sylancr 590 . . . . . . . 8 ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → (𝑇op (𝑧𝑧)) ∈ HrmOp)
19 hmopm 29908 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ (𝑇op (𝑧𝑧)) ∈ HrmOp) → ((1 / 2) ·op (𝑇op (𝑧𝑧))) ∈ HrmOp)
2012, 18, 19sylancr 590 . . . . . . 7 ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → ((1 / 2) ·op (𝑇op (𝑧𝑧))) ∈ HrmOp)
21 hmops 29907 . . . . . . 7 ((𝑧 ∈ HrmOp ∧ ((1 / 2) ·op (𝑇op (𝑧𝑧))) ∈ HrmOp) → (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))) ∈ HrmOp)
2220, 21syldan 594 . . . . . 6 ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → (𝑧 +op ((1 / 2) ·op (𝑇op (𝑧𝑧)))) ∈ HrmOp)
2311, 22eqeltrd 2852 . . . . 5 ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → (𝑧𝑆𝑤) ∈ HrmOp)
2423adantl 485 . . . 4 ((⊤ ∧ (𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp)) → (𝑧𝑆𝑤) ∈ HrmOp)
251, 2, 7, 24seqf 13446 . . 3 (⊤ → seq1(𝑆, (ℕ × { 0hop })):ℕ⟶HrmOp)
2625mptru 1545 . 2 seq1(𝑆, (ℕ × { 0hop })):ℕ⟶HrmOp
2710feq1i 6493 . 2 (𝐹:ℕ⟶HrmOp ↔ seq1(𝑆, (ℕ × { 0hop })):ℕ⟶HrmOp)
2826, 27mpbir 234 1 𝐹:ℕ⟶HrmOp
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538  ⊤wtru 1539   ∈ wcel 2111  {csn 4525   × cxp 5525   ∘ ccom 5531  ⟶wf 6335  ‘cfv 6339  (class class class)co 7155   ∈ cmpo 7157  ℝcr 10579  1c1 10581   / cdiv 11340  ℕcn 11679  2c2 11734  seqcseq 13423   +op chos 28825   ·op chot 28826   −op chod 28827   0hop ch0o 28830  HrmOpcho 28837 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-inf2 9142  ax-cc 9900  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658  ax-addf 10659  ax-mulf 10660  ax-hilex 28886  ax-hfvadd 28887  ax-hvcom 28888  ax-hvass 28889  ax-hv0cl 28890  ax-hvaddid 28891  ax-hfvmul 28892  ax-hvmulid 28893  ax-hvmulass 28894  ax-hvdistr1 28895  ax-hvdistr2 28896  ax-hvmul0 28897  ax-hfi 28966  ax-his1 28969  ax-his2 28970  ax-his3 28971  ax-his4 28972  ax-hcompl 29089 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-oadd 8121  df-omul 8122  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-fi 8913  df-sup 8944  df-inf 8945  df-oi 9012  df-card 9406  df-acn 9409  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-q 12394  df-rp 12436  df-xneg 12553  df-xadd 12554  df-xmul 12555  df-ioo 12788  df-ico 12790  df-icc 12791  df-fz 12945  df-fzo 13088  df-fl 13216  df-seq 13424  df-exp 13485  df-hash 13746  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-clim 14898  df-rlim 14899  df-sum 15096  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-starv 16643  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-unif 16651  df-hom 16652  df-cco 16653  df-rest 16759  df-topn 16760  df-0g 16778  df-gsum 16779  df-topgen 16780  df-pt 16781  df-prds 16784  df-xrs 16838  df-qtop 16843  df-imas 16844  df-xps 16846  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-submnd 18028  df-mulg 18297  df-cntz 18519  df-cmn 18980  df-psmet 20163  df-xmet 20164  df-met 20165  df-bl 20166  df-mopn 20167  df-fbas 20168  df-fg 20169  df-cnfld 20172  df-top 21599  df-topon 21616  df-topsp 21638  df-bases 21651  df-cld 21724  df-ntr 21725  df-cls 21726  df-nei 21803  df-cn 21932  df-cnp 21933  df-lm 21934  df-haus 22020  df-tx 22267  df-hmeo 22460  df-fil 22551  df-fm 22643  df-flim 22644  df-flf 22645  df-xms 23027  df-ms 23028  df-tms 23029  df-cfil 23960  df-cau 23961  df-cmet 23962  df-grpo 28380  df-gid 28381  df-ginv 28382  df-gdiv 28383  df-ablo 28432  df-vc 28446  df-nv 28479  df-va 28482  df-ba 28483  df-sm 28484  df-0v 28485  df-vs 28486  df-nmcv 28487  df-ims 28488  df-dip 28588  df-ssp 28609  df-ph 28700  df-cbn 28750  df-hnorm 28855  df-hba 28856  df-hvsub 28858  df-hlim 28859  df-hcau 28860  df-sh 29094  df-ch 29108  df-oc 29139  df-ch0 29140  df-shs 29195  df-pjh 29282  df-hosum 29617  df-homul 29618  df-hodif 29619  df-h0op 29635  df-hmop 29731 This theorem is referenced by:  opsqrlem5  30031  opsqrlem6  30032
 Copyright terms: Public domain W3C validator