![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > opsqrlem4 | Structured version Visualization version GIF version |
Description: Lemma for opsqri . (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
opsqrlem2.1 | โข ๐ โ HrmOp |
opsqrlem2.2 | โข ๐ = (๐ฅ โ HrmOp, ๐ฆ โ HrmOp โฆ (๐ฅ +op ((1 / 2) ยทop (๐ โop (๐ฅ โ ๐ฅ))))) |
opsqrlem2.3 | โข ๐น = seq1(๐, (โ ร { 0hop })) |
Ref | Expression |
---|---|
opsqrlem4 | โข ๐น:โโถHrmOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12798 | . . . 4 โข โ = (โคโฅโ1) | |
2 | 1zzd 12530 | . . . 4 โข (โค โ 1 โ โค) | |
3 | 0hmop 30811 | . . . . . . . 8 โข 0hop โ HrmOp | |
4 | 3 | elexi 3462 | . . . . . . 7 โข 0hop โ V |
5 | 4 | fvconst2 7149 | . . . . . 6 โข (๐ง โ โ โ ((โ ร { 0hop })โ๐ง) = 0hop ) |
6 | 5, 3 | eqeltrdi 2846 | . . . . 5 โข (๐ง โ โ โ ((โ ร { 0hop })โ๐ง) โ HrmOp) |
7 | 6 | adantl 482 | . . . 4 โข ((โค โง ๐ง โ โ) โ ((โ ร { 0hop })โ๐ง) โ HrmOp) |
8 | opsqrlem2.1 | . . . . . . 7 โข ๐ โ HrmOp | |
9 | opsqrlem2.2 | . . . . . . 7 โข ๐ = (๐ฅ โ HrmOp, ๐ฆ โ HrmOp โฆ (๐ฅ +op ((1 / 2) ยทop (๐ โop (๐ฅ โ ๐ฅ))))) | |
10 | opsqrlem2.3 | . . . . . . 7 โข ๐น = seq1(๐, (โ ร { 0hop })) | |
11 | 8, 9, 10 | opsqrlem3 30970 | . . . . . 6 โข ((๐ง โ HrmOp โง ๐ค โ HrmOp) โ (๐ง๐๐ค) = (๐ง +op ((1 / 2) ยทop (๐ โop (๐ง โ ๐ง))))) |
12 | halfre 12363 | . . . . . . . 8 โข (1 / 2) โ โ | |
13 | simpl 483 | . . . . . . . . . 10 โข ((๐ง โ HrmOp โง ๐ค โ HrmOp) โ ๐ง โ HrmOp) | |
14 | eqidd 2737 | . . . . . . . . . 10 โข ((๐ง โ HrmOp โง ๐ค โ HrmOp) โ (๐ง โ ๐ง) = (๐ง โ ๐ง)) | |
15 | hmopco 30851 | . . . . . . . . . 10 โข ((๐ง โ HrmOp โง ๐ง โ HrmOp โง (๐ง โ ๐ง) = (๐ง โ ๐ง)) โ (๐ง โ ๐ง) โ HrmOp) | |
16 | 13, 13, 14, 15 | syl3anc 1371 | . . . . . . . . 9 โข ((๐ง โ HrmOp โง ๐ค โ HrmOp) โ (๐ง โ ๐ง) โ HrmOp) |
17 | hmopd 30850 | . . . . . . . . 9 โข ((๐ โ HrmOp โง (๐ง โ ๐ง) โ HrmOp) โ (๐ โop (๐ง โ ๐ง)) โ HrmOp) | |
18 | 8, 16, 17 | sylancr 587 | . . . . . . . 8 โข ((๐ง โ HrmOp โง ๐ค โ HrmOp) โ (๐ โop (๐ง โ ๐ง)) โ HrmOp) |
19 | hmopm 30849 | . . . . . . . 8 โข (((1 / 2) โ โ โง (๐ โop (๐ง โ ๐ง)) โ HrmOp) โ ((1 / 2) ยทop (๐ โop (๐ง โ ๐ง))) โ HrmOp) | |
20 | 12, 18, 19 | sylancr 587 | . . . . . . 7 โข ((๐ง โ HrmOp โง ๐ค โ HrmOp) โ ((1 / 2) ยทop (๐ โop (๐ง โ ๐ง))) โ HrmOp) |
21 | hmops 30848 | . . . . . . 7 โข ((๐ง โ HrmOp โง ((1 / 2) ยทop (๐ โop (๐ง โ ๐ง))) โ HrmOp) โ (๐ง +op ((1 / 2) ยทop (๐ โop (๐ง โ ๐ง)))) โ HrmOp) | |
22 | 20, 21 | syldan 591 | . . . . . 6 โข ((๐ง โ HrmOp โง ๐ค โ HrmOp) โ (๐ง +op ((1 / 2) ยทop (๐ โop (๐ง โ ๐ง)))) โ HrmOp) |
23 | 11, 22 | eqeltrd 2838 | . . . . 5 โข ((๐ง โ HrmOp โง ๐ค โ HrmOp) โ (๐ง๐๐ค) โ HrmOp) |
24 | 23 | adantl 482 | . . . 4 โข ((โค โง (๐ง โ HrmOp โง ๐ค โ HrmOp)) โ (๐ง๐๐ค) โ HrmOp) |
25 | 1, 2, 7, 24 | seqf 13921 | . . 3 โข (โค โ seq1(๐, (โ ร { 0hop })):โโถHrmOp) |
26 | 25 | mptru 1548 | . 2 โข seq1(๐, (โ ร { 0hop })):โโถHrmOp |
27 | 10 | feq1i 6656 | . 2 โข (๐น:โโถHrmOp โ seq1(๐, (โ ร { 0hop })):โโถHrmOp) |
28 | 26, 27 | mpbir 230 | 1 โข ๐น:โโถHrmOp |
Colors of variables: wff setvar class |
Syntax hints: โง wa 396 = wceq 1541 โคwtru 1542 โ wcel 2106 {csn 4584 ร cxp 5629 โ ccom 5635 โถwf 6489 โcfv 6493 (class class class)co 7353 โ cmpo 7355 โcr 11046 1c1 11048 / cdiv 11808 โcn 12149 2c2 12204 seqcseq 13898 +op chos 29766 ยทop chot 29767 โop chod 29768 0hop ch0o 29771 HrmOpcho 29778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7668 ax-inf2 9573 ax-cc 10367 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-pre-sup 11125 ax-addf 11126 ax-mulf 11127 ax-hilex 29827 ax-hfvadd 29828 ax-hvcom 29829 ax-hvass 29830 ax-hv0cl 29831 ax-hvaddid 29832 ax-hfvmul 29833 ax-hvmulid 29834 ax-hvmulass 29835 ax-hvdistr1 29836 ax-hvdistr2 29837 ax-hvmul0 29838 ax-hfi 29907 ax-his1 29910 ax-his2 29911 ax-his3 29912 ax-his4 29913 ax-hcompl 30030 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-iin 4955 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-isom 6502 df-riota 7309 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7613 df-om 7799 df-1st 7917 df-2nd 7918 df-supp 8089 df-frecs 8208 df-wrecs 8239 df-recs 8313 df-rdg 8352 df-1o 8408 df-2o 8409 df-oadd 8412 df-omul 8413 df-er 8644 df-map 8763 df-pm 8764 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9302 df-fi 9343 df-sup 9374 df-inf 9375 df-oi 9442 df-card 9871 df-acn 9874 df-pnf 11187 df-mnf 11188 df-xr 11189 df-ltxr 11190 df-le 11191 df-sub 11383 df-neg 11384 df-div 11809 df-nn 12150 df-2 12212 df-3 12213 df-4 12214 df-5 12215 df-6 12216 df-7 12217 df-8 12218 df-9 12219 df-n0 12410 df-z 12496 df-dec 12615 df-uz 12760 df-q 12866 df-rp 12908 df-xneg 13025 df-xadd 13026 df-xmul 13027 df-ioo 13260 df-ico 13262 df-icc 13263 df-fz 13417 df-fzo 13560 df-fl 13689 df-seq 13899 df-exp 13960 df-hash 14223 df-cj 14976 df-re 14977 df-im 14978 df-sqrt 15112 df-abs 15113 df-clim 15362 df-rlim 15363 df-sum 15563 df-struct 17011 df-sets 17028 df-slot 17046 df-ndx 17058 df-base 17076 df-ress 17105 df-plusg 17138 df-mulr 17139 df-starv 17140 df-sca 17141 df-vsca 17142 df-ip 17143 df-tset 17144 df-ple 17145 df-ds 17147 df-unif 17148 df-hom 17149 df-cco 17150 df-rest 17296 df-topn 17297 df-0g 17315 df-gsum 17316 df-topgen 17317 df-pt 17318 df-prds 17321 df-xrs 17376 df-qtop 17381 df-imas 17382 df-xps 17384 df-mre 17458 df-mrc 17459 df-acs 17461 df-mgm 18489 df-sgrp 18538 df-mnd 18549 df-submnd 18594 df-mulg 18864 df-cntz 19088 df-cmn 19555 df-psmet 20773 df-xmet 20774 df-met 20775 df-bl 20776 df-mopn 20777 df-fbas 20778 df-fg 20779 df-cnfld 20782 df-top 22227 df-topon 22244 df-topsp 22266 df-bases 22280 df-cld 22354 df-ntr 22355 df-cls 22356 df-nei 22433 df-cn 22562 df-cnp 22563 df-lm 22564 df-haus 22650 df-tx 22897 df-hmeo 23090 df-fil 23181 df-fm 23273 df-flim 23274 df-flf 23275 df-xms 23657 df-ms 23658 df-tms 23659 df-cfil 24603 df-cau 24604 df-cmet 24605 df-grpo 29321 df-gid 29322 df-ginv 29323 df-gdiv 29324 df-ablo 29373 df-vc 29387 df-nv 29420 df-va 29423 df-ba 29424 df-sm 29425 df-0v 29426 df-vs 29427 df-nmcv 29428 df-ims 29429 df-dip 29529 df-ssp 29550 df-ph 29641 df-cbn 29691 df-hnorm 29796 df-hba 29797 df-hvsub 29799 df-hlim 29800 df-hcau 29801 df-sh 30035 df-ch 30049 df-oc 30080 df-ch0 30081 df-shs 30136 df-pjh 30223 df-hosum 30558 df-homul 30559 df-hodif 30560 df-h0op 30576 df-hmop 30672 |
This theorem is referenced by: opsqrlem5 30972 opsqrlem6 30973 |
Copyright terms: Public domain | W3C validator |