| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > opsqrlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for opsqri . (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| opsqrlem2.1 | ⊢ 𝑇 ∈ HrmOp |
| opsqrlem2.2 | ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) |
| opsqrlem2.3 | ⊢ 𝐹 = seq1(𝑆, (ℕ × { 0hop })) |
| Ref | Expression |
|---|---|
| opsqrlem4 | ⊢ 𝐹:ℕ⟶HrmOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12797 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 12525 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
| 3 | 0hmop 31946 | . . . . . . . 8 ⊢ 0hop ∈ HrmOp | |
| 4 | 3 | elexi 3461 | . . . . . . 7 ⊢ 0hop ∈ V |
| 5 | 4 | fvconst2 7144 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((ℕ × { 0hop })‘𝑧) = 0hop ) |
| 6 | 5, 3 | eqeltrdi 2836 | . . . . 5 ⊢ (𝑧 ∈ ℕ → ((ℕ × { 0hop })‘𝑧) ∈ HrmOp) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑧 ∈ ℕ) → ((ℕ × { 0hop })‘𝑧) ∈ HrmOp) |
| 8 | opsqrlem2.1 | . . . . . . 7 ⊢ 𝑇 ∈ HrmOp | |
| 9 | opsqrlem2.2 | . . . . . . 7 ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) | |
| 10 | opsqrlem2.3 | . . . . . . 7 ⊢ 𝐹 = seq1(𝑆, (ℕ × { 0hop })) | |
| 11 | 8, 9, 10 | opsqrlem3 32105 | . . . . . 6 ⊢ ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → (𝑧𝑆𝑤) = (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
| 12 | halfre 12356 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℝ | |
| 13 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → 𝑧 ∈ HrmOp) | |
| 14 | eqidd 2730 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → (𝑧 ∘ 𝑧) = (𝑧 ∘ 𝑧)) | |
| 15 | hmopco 31986 | . . . . . . . . . 10 ⊢ ((𝑧 ∈ HrmOp ∧ 𝑧 ∈ HrmOp ∧ (𝑧 ∘ 𝑧) = (𝑧 ∘ 𝑧)) → (𝑧 ∘ 𝑧) ∈ HrmOp) | |
| 16 | 13, 13, 14, 15 | syl3anc 1373 | . . . . . . . . 9 ⊢ ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → (𝑧 ∘ 𝑧) ∈ HrmOp) |
| 17 | hmopd 31985 | . . . . . . . . 9 ⊢ ((𝑇 ∈ HrmOp ∧ (𝑧 ∘ 𝑧) ∈ HrmOp) → (𝑇 −op (𝑧 ∘ 𝑧)) ∈ HrmOp) | |
| 18 | 8, 16, 17 | sylancr 587 | . . . . . . . 8 ⊢ ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → (𝑇 −op (𝑧 ∘ 𝑧)) ∈ HrmOp) |
| 19 | hmopm 31984 | . . . . . . . 8 ⊢ (((1 / 2) ∈ ℝ ∧ (𝑇 −op (𝑧 ∘ 𝑧)) ∈ HrmOp) → ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))) ∈ HrmOp) | |
| 20 | 12, 18, 19 | sylancr 587 | . . . . . . 7 ⊢ ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))) ∈ HrmOp) |
| 21 | hmops 31983 | . . . . . . 7 ⊢ ((𝑧 ∈ HrmOp ∧ ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))) ∈ HrmOp) → (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) ∈ HrmOp) | |
| 22 | 20, 21 | syldan 591 | . . . . . 6 ⊢ ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) ∈ HrmOp) |
| 23 | 11, 22 | eqeltrd 2828 | . . . . 5 ⊢ ((𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp) → (𝑧𝑆𝑤) ∈ HrmOp) |
| 24 | 23 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ (𝑧 ∈ HrmOp ∧ 𝑤 ∈ HrmOp)) → (𝑧𝑆𝑤) ∈ HrmOp) |
| 25 | 1, 2, 7, 24 | seqf 13949 | . . 3 ⊢ (⊤ → seq1(𝑆, (ℕ × { 0hop })):ℕ⟶HrmOp) |
| 26 | 25 | mptru 1547 | . 2 ⊢ seq1(𝑆, (ℕ × { 0hop })):ℕ⟶HrmOp |
| 27 | 10 | feq1i 6647 | . 2 ⊢ (𝐹:ℕ⟶HrmOp ↔ seq1(𝑆, (ℕ × { 0hop })):ℕ⟶HrmOp) |
| 28 | 26, 27 | mpbir 231 | 1 ⊢ 𝐹:ℕ⟶HrmOp |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {csn 4579 × cxp 5621 ∘ ccom 5627 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ℝcr 11027 1c1 11029 / cdiv 11796 ℕcn 12147 2c2 12202 seqcseq 13927 +op chos 30901 ·op chot 30902 −op chod 30903 0hop ch0o 30906 HrmOpcho 30913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 ax-hilex 30962 ax-hfvadd 30963 ax-hvcom 30964 ax-hvass 30965 ax-hv0cl 30966 ax-hvaddid 30967 ax-hfvmul 30968 ax-hvmulid 30969 ax-hvmulass 30970 ax-hvdistr1 30971 ax-hvdistr2 30972 ax-hvmul0 30973 ax-hfi 31042 ax-his1 31045 ax-his2 31046 ax-his3 31047 ax-his4 31048 ax-hcompl 31165 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-q 12869 df-rp 12913 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13271 df-ico 13273 df-icc 13274 df-fz 13430 df-fzo 13577 df-fl 13715 df-seq 13928 df-exp 13988 df-hash 14257 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-clim 15414 df-rlim 15415 df-sum 15613 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-starv 17195 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-unif 17203 df-hom 17204 df-cco 17205 df-rest 17345 df-topn 17346 df-0g 17364 df-gsum 17365 df-topgen 17366 df-pt 17367 df-prds 17370 df-xrs 17425 df-qtop 17430 df-imas 17431 df-xps 17433 df-mre 17507 df-mrc 17508 df-acs 17510 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-mulg 18966 df-cntz 19215 df-cmn 19680 df-psmet 21272 df-xmet 21273 df-met 21274 df-bl 21275 df-mopn 21276 df-fbas 21277 df-fg 21278 df-cnfld 21281 df-top 22798 df-topon 22815 df-topsp 22837 df-bases 22850 df-cld 22923 df-ntr 22924 df-cls 22925 df-nei 23002 df-cn 23131 df-cnp 23132 df-lm 23133 df-haus 23219 df-tx 23466 df-hmeo 23659 df-fil 23750 df-fm 23842 df-flim 23843 df-flf 23844 df-xms 24225 df-ms 24226 df-tms 24227 df-cfil 25172 df-cau 25173 df-cmet 25174 df-grpo 30456 df-gid 30457 df-ginv 30458 df-gdiv 30459 df-ablo 30508 df-vc 30522 df-nv 30555 df-va 30558 df-ba 30559 df-sm 30560 df-0v 30561 df-vs 30562 df-nmcv 30563 df-ims 30564 df-dip 30664 df-ssp 30685 df-ph 30776 df-cbn 30826 df-hnorm 30931 df-hba 30932 df-hvsub 30934 df-hlim 30935 df-hcau 30936 df-sh 31170 df-ch 31184 df-oc 31215 df-ch0 31216 df-shs 31271 df-pjh 31358 df-hosum 31693 df-homul 31694 df-hodif 31695 df-h0op 31711 df-hmop 31807 |
| This theorem is referenced by: opsqrlem5 32107 opsqrlem6 32108 |
| Copyright terms: Public domain | W3C validator |