Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfrlem10 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. We define class 𝐶 by extending recs with one ordered pair. We will assume, falsely, that domain of recs is a member of, and thus not equal to, On. Using this assumption we will prove facts about 𝐶 that will lead to a contradiction in tfrlem14 8042, thus showing the domain of recs does in fact equal On. Here we show (under the false assumption) that 𝐶 is a function extending the domain of recs(𝐹) by one. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
tfrlem.3 | ⊢ 𝐶 = (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) |
Ref | Expression |
---|---|
tfrlem10 | ⊢ (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6675 | . . . . . 6 ⊢ (𝐹‘recs(𝐹)) ∈ V | |
2 | funsng 6390 | . . . . . 6 ⊢ ((dom recs(𝐹) ∈ On ∧ (𝐹‘recs(𝐹)) ∈ V) → Fun {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
3 | 1, 2 | mpan2 690 | . . . . 5 ⊢ (dom recs(𝐹) ∈ On → Fun {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) |
4 | tfrlem.1 | . . . . . 6 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
5 | 4 | tfrlem7 8034 | . . . . 5 ⊢ Fun recs(𝐹) |
6 | 3, 5 | jctil 523 | . . . 4 ⊢ (dom recs(𝐹) ∈ On → (Fun recs(𝐹) ∧ Fun {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) |
7 | 1 | dmsnop 6049 | . . . . . 6 ⊢ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉} = {dom recs(𝐹)} |
8 | 7 | ineq2i 4116 | . . . . 5 ⊢ (dom recs(𝐹) ∩ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (dom recs(𝐹) ∩ {dom recs(𝐹)}) |
9 | 4 | tfrlem8 8035 | . . . . . 6 ⊢ Ord dom recs(𝐹) |
10 | orddisj 6211 | . . . . . 6 ⊢ (Ord dom recs(𝐹) → (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅) | |
11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅ |
12 | 8, 11 | eqtri 2781 | . . . 4 ⊢ (dom recs(𝐹) ∩ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = ∅ |
13 | funun 6385 | . . . 4 ⊢ (((Fun recs(𝐹) ∧ Fun {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∧ (dom recs(𝐹) ∩ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = ∅) → Fun (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) | |
14 | 6, 12, 13 | sylancl 589 | . . 3 ⊢ (dom recs(𝐹) ∈ On → Fun (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) |
15 | 7 | uneq2i 4067 | . . . 4 ⊢ (dom recs(𝐹) ∪ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (dom recs(𝐹) ∪ {dom recs(𝐹)}) |
16 | dmun 5755 | . . . 4 ⊢ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (dom recs(𝐹) ∪ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
17 | df-suc 6179 | . . . 4 ⊢ suc dom recs(𝐹) = (dom recs(𝐹) ∪ {dom recs(𝐹)}) | |
18 | 15, 16, 17 | 3eqtr4i 2791 | . . 3 ⊢ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹) |
19 | df-fn 6342 | . . 3 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹) ↔ (Fun (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∧ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹))) | |
20 | 14, 18, 19 | sylanblrc 593 | . 2 ⊢ (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹)) |
21 | tfrlem.3 | . . 3 ⊢ 𝐶 = (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
22 | 21 | fneq1i 6435 | . 2 ⊢ (𝐶 Fn suc dom recs(𝐹) ↔ (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹)) |
23 | 20, 22 | sylibr 237 | 1 ⊢ (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 ∀wral 3070 ∃wrex 3071 Vcvv 3409 ∪ cun 3858 ∩ cin 3859 ∅c0 4227 {csn 4525 〈cop 4531 dom cdm 5527 ↾ cres 5529 Ord word 6172 Oncon0 6173 suc csuc 6175 Fun wfun 6333 Fn wfn 6334 ‘cfv 6339 recscrecs 8022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-fv 6347 df-wrecs 7962 df-recs 8023 |
This theorem is referenced by: tfrlem11 8039 tfrlem12 8040 tfrlem13 8041 |
Copyright terms: Public domain | W3C validator |