Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem10 Structured version   Visualization version   GIF version

Theorem tfrlem10 8038
 Description: Lemma for transfinite recursion. We define class 𝐶 by extending recs with one ordered pair. We will assume, falsely, that domain of recs is a member of, and thus not equal to, On. Using this assumption we will prove facts about 𝐶 that will lead to a contradiction in tfrlem14 8042, thus showing the domain of recs does in fact equal On. Here we show (under the false assumption) that 𝐶 is a function extending the domain of recs(𝐹) by one. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem.3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
Assertion
Ref Expression
tfrlem10 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐶   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem10
StepHypRef Expression
1 fvex 6675 . . . . . 6 (𝐹‘recs(𝐹)) ∈ V
2 funsng 6390 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ (𝐹‘recs(𝐹)) ∈ V) → Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
31, 2mpan2 690 . . . . 5 (dom recs(𝐹) ∈ On → Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
4 tfrlem.1 . . . . . 6 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
54tfrlem7 8034 . . . . 5 Fun recs(𝐹)
63, 5jctil 523 . . . 4 (dom recs(𝐹) ∈ On → (Fun recs(𝐹) ∧ Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
71dmsnop 6049 . . . . . 6 dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} = {dom recs(𝐹)}
87ineq2i 4116 . . . . 5 (dom recs(𝐹) ∩ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (dom recs(𝐹) ∩ {dom recs(𝐹)})
94tfrlem8 8035 . . . . . 6 Ord dom recs(𝐹)
10 orddisj 6211 . . . . . 6 (Ord dom recs(𝐹) → (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅)
119, 10ax-mp 5 . . . . 5 (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅
128, 11eqtri 2781 . . . 4 (dom recs(𝐹) ∩ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = ∅
13 funun 6385 . . . 4 (((Fun recs(𝐹) ∧ Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∧ (dom recs(𝐹) ∩ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = ∅) → Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
146, 12, 13sylancl 589 . . 3 (dom recs(𝐹) ∈ On → Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
157uneq2i 4067 . . . 4 (dom recs(𝐹) ∪ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (dom recs(𝐹) ∪ {dom recs(𝐹)})
16 dmun 5755 . . . 4 dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (dom recs(𝐹) ∪ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
17 df-suc 6179 . . . 4 suc dom recs(𝐹) = (dom recs(𝐹) ∪ {dom recs(𝐹)})
1815, 16, 173eqtr4i 2791 . . 3 dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹)
19 df-fn 6342 . . 3 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹) ↔ (Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∧ dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹)))
2014, 18, 19sylanblrc 593 . 2 (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹))
21 tfrlem.3 . . 3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
2221fneq1i 6435 . 2 (𝐶 Fn suc dom recs(𝐹) ↔ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹))
2320, 22sylibr 237 1 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {cab 2735  ∀wral 3070  ∃wrex 3071  Vcvv 3409   ∪ cun 3858   ∩ cin 3859  ∅c0 4227  {csn 4525  ⟨cop 4531  dom cdm 5527   ↾ cres 5529  Ord word 6172  Oncon0 6173  suc csuc 6175  Fun wfun 6333   Fn wfn 6334  ‘cfv 6339  recscrecs 8022 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301  ax-un 7464 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-fv 6347  df-wrecs 7962  df-recs 8023 This theorem is referenced by:  tfrlem11  8039  tfrlem12  8040  tfrlem13  8041
 Copyright terms: Public domain W3C validator