Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfrlem10 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. We define class 𝐶 by extending recs with one ordered pair. We will assume, falsely, that domain of recs is a member of, and thus not equal to, On. Using this assumption we will prove facts about 𝐶 that will lead to a contradiction in tfrlem14 8222, thus showing the domain of recs does in fact equal On. Here we show (under the false assumption) that 𝐶 is a function extending the domain of recs(𝐹) by one. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
tfrlem.3 | ⊢ 𝐶 = (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) |
Ref | Expression |
---|---|
tfrlem10 | ⊢ (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6787 | . . . . . 6 ⊢ (𝐹‘recs(𝐹)) ∈ V | |
2 | funsng 6485 | . . . . . 6 ⊢ ((dom recs(𝐹) ∈ On ∧ (𝐹‘recs(𝐹)) ∈ V) → Fun {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
3 | 1, 2 | mpan2 688 | . . . . 5 ⊢ (dom recs(𝐹) ∈ On → Fun {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) |
4 | tfrlem.1 | . . . . . 6 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
5 | 4 | tfrlem7 8214 | . . . . 5 ⊢ Fun recs(𝐹) |
6 | 3, 5 | jctil 520 | . . . 4 ⊢ (dom recs(𝐹) ∈ On → (Fun recs(𝐹) ∧ Fun {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) |
7 | 1 | dmsnop 6119 | . . . . . 6 ⊢ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉} = {dom recs(𝐹)} |
8 | 7 | ineq2i 4143 | . . . . 5 ⊢ (dom recs(𝐹) ∩ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (dom recs(𝐹) ∩ {dom recs(𝐹)}) |
9 | 4 | tfrlem8 8215 | . . . . . 6 ⊢ Ord dom recs(𝐹) |
10 | orddisj 6304 | . . . . . 6 ⊢ (Ord dom recs(𝐹) → (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅) | |
11 | 9, 10 | ax-mp 5 | . . . . 5 ⊢ (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅ |
12 | 8, 11 | eqtri 2766 | . . . 4 ⊢ (dom recs(𝐹) ∩ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = ∅ |
13 | funun 6480 | . . . 4 ⊢ (((Fun recs(𝐹) ∧ Fun {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∧ (dom recs(𝐹) ∩ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = ∅) → Fun (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) | |
14 | 6, 12, 13 | sylancl 586 | . . 3 ⊢ (dom recs(𝐹) ∈ On → Fun (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉})) |
15 | 7 | uneq2i 4094 | . . . 4 ⊢ (dom recs(𝐹) ∪ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (dom recs(𝐹) ∪ {dom recs(𝐹)}) |
16 | dmun 5819 | . . . 4 ⊢ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = (dom recs(𝐹) ∪ dom {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
17 | df-suc 6272 | . . . 4 ⊢ suc dom recs(𝐹) = (dom recs(𝐹) ∪ {dom recs(𝐹)}) | |
18 | 15, 16, 17 | 3eqtr4i 2776 | . . 3 ⊢ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹) |
19 | df-fn 6436 | . . 3 ⊢ ((recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹) ↔ (Fun (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) ∧ dom (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) = suc dom recs(𝐹))) | |
20 | 14, 18, 19 | sylanblrc 590 | . 2 ⊢ (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹)) |
21 | tfrlem.3 | . . 3 ⊢ 𝐶 = (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) | |
22 | 21 | fneq1i 6530 | . 2 ⊢ (𝐶 Fn suc dom recs(𝐹) ↔ (recs(𝐹) ∪ {〈dom recs(𝐹), (𝐹‘recs(𝐹))〉}) Fn suc dom recs(𝐹)) |
23 | 20, 22 | sylibr 233 | 1 ⊢ (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 {csn 4561 〈cop 4567 dom cdm 5589 ↾ cres 5591 Ord word 6265 Oncon0 6266 suc csuc 6268 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 recscrecs 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-ov 7278 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 |
This theorem is referenced by: tfrlem11 8219 tfrlem12 8220 tfrlem13 8221 |
Copyright terms: Public domain | W3C validator |