MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem10 Structured version   Visualization version   GIF version

Theorem tfrlem10 8390
Description: Lemma for transfinite recursion. We define class 𝐶 by extending recs with one ordered pair. We will assume, falsely, that domain of recs is a member of, and thus not equal to, On. Using this assumption we will prove facts about 𝐶 that will lead to a contradiction in tfrlem14 8394, thus showing the domain of recs does in fact equal On. Here we show (under the false assumption) that 𝐶 is a function extending the domain of recs(𝐹) by one. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem.3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
Assertion
Ref Expression
tfrlem10 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐶   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem10
StepHypRef Expression
1 fvex 6905 . . . . . 6 (𝐹‘recs(𝐹)) ∈ V
2 funsng 6600 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ (𝐹‘recs(𝐹)) ∈ V) → Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
31, 2mpan2 688 . . . . 5 (dom recs(𝐹) ∈ On → Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
4 tfrlem.1 . . . . . 6 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
54tfrlem7 8386 . . . . 5 Fun recs(𝐹)
63, 5jctil 519 . . . 4 (dom recs(𝐹) ∈ On → (Fun recs(𝐹) ∧ Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
71dmsnop 6216 . . . . . 6 dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} = {dom recs(𝐹)}
87ineq2i 4210 . . . . 5 (dom recs(𝐹) ∩ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (dom recs(𝐹) ∩ {dom recs(𝐹)})
94tfrlem8 8387 . . . . . 6 Ord dom recs(𝐹)
10 orddisj 6403 . . . . . 6 (Ord dom recs(𝐹) → (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅)
119, 10ax-mp 5 . . . . 5 (dom recs(𝐹) ∩ {dom recs(𝐹)}) = ∅
128, 11eqtri 2759 . . . 4 (dom recs(𝐹) ∩ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = ∅
13 funun 6595 . . . 4 (((Fun recs(𝐹) ∧ Fun {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∧ (dom recs(𝐹) ∩ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = ∅) → Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
146, 12, 13sylancl 585 . . 3 (dom recs(𝐹) ∈ On → Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
157uneq2i 4161 . . . 4 (dom recs(𝐹) ∪ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (dom recs(𝐹) ∪ {dom recs(𝐹)})
16 dmun 5911 . . . 4 dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (dom recs(𝐹) ∪ dom {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
17 df-suc 6371 . . . 4 suc dom recs(𝐹) = (dom recs(𝐹) ∪ {dom recs(𝐹)})
1815, 16, 173eqtr4i 2769 . . 3 dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹)
19 df-fn 6547 . . 3 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹) ↔ (Fun (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∧ dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹)))
2014, 18, 19sylanblrc 589 . 2 (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹))
21 tfrlem.3 . . 3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
2221fneq1i 6647 . 2 (𝐶 Fn suc dom recs(𝐹) ↔ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹))
2320, 22sylibr 233 1 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  {cab 2708  wral 3060  wrex 3069  Vcvv 3473  cun 3947  cin 3948  c0 4323  {csn 4629  cop 4635  dom cdm 5677  cres 5679  Ord word 6364  Oncon0 6365  suc csuc 6367  Fun wfun 6538   Fn wfn 6539  cfv 6544  recscrecs 8373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552  df-ov 7415  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374
This theorem is referenced by:  tfrlem11  8391  tfrlem12  8392  tfrlem13  8393
  Copyright terms: Public domain W3C validator