![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unsnen | Structured version Visualization version GIF version |
Description: Equinumerosity of a set with a new element added. (Contributed by NM, 7-Nov-2008.) |
Ref | Expression |
---|---|
unsnen.1 | ⊢ 𝐴 ∈ V |
unsnen.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
unsnen | ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn 4717 | . . 3 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
2 | cardon 9988 | . . . . . 6 ⊢ (card‘𝐴) ∈ On | |
3 | 2 | onordi 6500 | . . . . 5 ⊢ Ord (card‘𝐴) |
4 | orddisj 6427 | . . . . 5 ⊢ (Ord (card‘𝐴) → ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅ |
6 | unsnen.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
7 | 6 | cardid 10591 | . . . . . 6 ⊢ (card‘𝐴) ≈ 𝐴 |
8 | 7 | ensymi 9049 | . . . . 5 ⊢ 𝐴 ≈ (card‘𝐴) |
9 | unsnen.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
10 | fvex 6924 | . . . . . 6 ⊢ (card‘𝐴) ∈ V | |
11 | en2sn 9086 | . . . . . 6 ⊢ ((𝐵 ∈ V ∧ (card‘𝐴) ∈ V) → {𝐵} ≈ {(card‘𝐴)}) | |
12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ {𝐵} ≈ {(card‘𝐴)} |
13 | unen 9091 | . . . . 5 ⊢ (((𝐴 ≈ (card‘𝐴) ∧ {𝐵} ≈ {(card‘𝐴)}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) | |
14 | 8, 12, 13 | mpanl12 702 | . . . 4 ⊢ (((𝐴 ∩ {𝐵}) = ∅ ∧ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅) → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) |
15 | 5, 14 | mpan2 691 | . . 3 ⊢ ((𝐴 ∩ {𝐵}) = ∅ → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) |
16 | 1, 15 | sylbir 235 | . 2 ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) |
17 | df-suc 6395 | . 2 ⊢ suc (card‘𝐴) = ((card‘𝐴) ∪ {(card‘𝐴)}) | |
18 | 16, 17 | breqtrrdi 5191 | 1 ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1538 ∈ wcel 2107 Vcvv 3479 ∪ cun 3962 ∩ cin 3963 ∅c0 4340 {csn 4632 class class class wbr 5149 Ord word 6388 suc csuc 6391 ‘cfv 6566 ≈ cen 8987 cardccrd 9979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-ac2 10507 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-er 8750 df-en 8991 df-card 9983 df-ac 10160 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |