MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unsnen Structured version   Visualization version   GIF version

Theorem unsnen 10447
Description: Equinumerosity of a set with a new element added. (Contributed by NM, 7-Nov-2008.)
Hypotheses
Ref Expression
unsnen.1 𝐴 ∈ V
unsnen.2 𝐵 ∈ V
Assertion
Ref Expression
unsnen 𝐵𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴))

Proof of Theorem unsnen
StepHypRef Expression
1 disjsn 4663 . . 3 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
2 cardon 9840 . . . . . 6 (card‘𝐴) ∈ On
32onordi 6420 . . . . 5 Ord (card‘𝐴)
4 orddisj 6345 . . . . 5 (Ord (card‘𝐴) → ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅)
53, 4ax-mp 5 . . . 4 ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅
6 unsnen.1 . . . . . . 7 𝐴 ∈ V
76cardid 10441 . . . . . 6 (card‘𝐴) ≈ 𝐴
87ensymi 8929 . . . . 5 𝐴 ≈ (card‘𝐴)
9 unsnen.2 . . . . . 6 𝐵 ∈ V
10 fvex 6835 . . . . . 6 (card‘𝐴) ∈ V
11 en2sn 8966 . . . . . 6 ((𝐵 ∈ V ∧ (card‘𝐴) ∈ V) → {𝐵} ≈ {(card‘𝐴)})
129, 10, 11mp2an 692 . . . . 5 {𝐵} ≈ {(card‘𝐴)}
13 unen 8971 . . . . 5 (((𝐴 ≈ (card‘𝐴) ∧ {𝐵} ≈ {(card‘𝐴)}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)}))
148, 12, 13mpanl12 702 . . . 4 (((𝐴 ∩ {𝐵}) = ∅ ∧ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅) → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)}))
155, 14mpan2 691 . . 3 ((𝐴 ∩ {𝐵}) = ∅ → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)}))
161, 15sylbir 235 . 2 𝐵𝐴 → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)}))
17 df-suc 6313 . 2 suc (card‘𝐴) = ((card‘𝐴) ∪ {(card‘𝐴)})
1816, 17breqtrrdi 5134 1 𝐵𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  cin 3902  c0 4284  {csn 4577   class class class wbr 5092  Ord word 6306  suc csuc 6309  cfv 6482  cen 8869  cardccrd 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-ac2 10357
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-er 8625  df-en 8873  df-card 9835  df-ac 10010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator