| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unsnen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity of a set with a new element added. (Contributed by NM, 7-Nov-2008.) |
| Ref | Expression |
|---|---|
| unsnen.1 | ⊢ 𝐴 ∈ V |
| unsnen.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| unsnen | ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjsn 4675 | . . 3 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
| 2 | cardon 9897 | . . . . . 6 ⊢ (card‘𝐴) ∈ On | |
| 3 | 2 | onordi 6445 | . . . . 5 ⊢ Ord (card‘𝐴) |
| 4 | orddisj 6370 | . . . . 5 ⊢ (Ord (card‘𝐴) → ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅ |
| 6 | unsnen.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 7 | 6 | cardid 10500 | . . . . . 6 ⊢ (card‘𝐴) ≈ 𝐴 |
| 8 | 7 | ensymi 8975 | . . . . 5 ⊢ 𝐴 ≈ (card‘𝐴) |
| 9 | unsnen.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 10 | fvex 6871 | . . . . . 6 ⊢ (card‘𝐴) ∈ V | |
| 11 | en2sn 9012 | . . . . . 6 ⊢ ((𝐵 ∈ V ∧ (card‘𝐴) ∈ V) → {𝐵} ≈ {(card‘𝐴)}) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ {𝐵} ≈ {(card‘𝐴)} |
| 13 | unen 9017 | . . . . 5 ⊢ (((𝐴 ≈ (card‘𝐴) ∧ {𝐵} ≈ {(card‘𝐴)}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) | |
| 14 | 8, 12, 13 | mpanl12 702 | . . . 4 ⊢ (((𝐴 ∩ {𝐵}) = ∅ ∧ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅) → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) |
| 15 | 5, 14 | mpan2 691 | . . 3 ⊢ ((𝐴 ∩ {𝐵}) = ∅ → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) |
| 16 | 1, 15 | sylbir 235 | . 2 ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) |
| 17 | df-suc 6338 | . 2 ⊢ suc (card‘𝐴) = ((card‘𝐴) ∪ {(card‘𝐴)}) | |
| 18 | 16, 17 | breqtrrdi 5149 | 1 ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ∩ cin 3913 ∅c0 4296 {csn 4589 class class class wbr 5107 Ord word 6331 suc csuc 6334 ‘cfv 6511 ≈ cen 8915 cardccrd 9888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-er 8671 df-en 8919 df-card 9892 df-ac 10069 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |