![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unsnen | Structured version Visualization version GIF version |
Description: Equinumerosity of a set with a new element added. (Contributed by NM, 7-Nov-2008.) |
Ref | Expression |
---|---|
unsnen.1 | ⊢ 𝐴 ∈ V |
unsnen.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
unsnen | ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn 4736 | . . 3 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
2 | cardon 10015 | . . . . . 6 ⊢ (card‘𝐴) ∈ On | |
3 | 2 | onordi 6508 | . . . . 5 ⊢ Ord (card‘𝐴) |
4 | orddisj 6435 | . . . . 5 ⊢ (Ord (card‘𝐴) → ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅ |
6 | unsnen.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
7 | 6 | cardid 10618 | . . . . . 6 ⊢ (card‘𝐴) ≈ 𝐴 |
8 | 7 | ensymi 9066 | . . . . 5 ⊢ 𝐴 ≈ (card‘𝐴) |
9 | unsnen.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
10 | fvex 6935 | . . . . . 6 ⊢ (card‘𝐴) ∈ V | |
11 | en2sn 9108 | . . . . . 6 ⊢ ((𝐵 ∈ V ∧ (card‘𝐴) ∈ V) → {𝐵} ≈ {(card‘𝐴)}) | |
12 | 9, 10, 11 | mp2an 691 | . . . . 5 ⊢ {𝐵} ≈ {(card‘𝐴)} |
13 | unen 9114 | . . . . 5 ⊢ (((𝐴 ≈ (card‘𝐴) ∧ {𝐵} ≈ {(card‘𝐴)}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) | |
14 | 8, 12, 13 | mpanl12 701 | . . . 4 ⊢ (((𝐴 ∩ {𝐵}) = ∅ ∧ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅) → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) |
15 | 5, 14 | mpan2 690 | . . 3 ⊢ ((𝐴 ∩ {𝐵}) = ∅ → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) |
16 | 1, 15 | sylbir 235 | . 2 ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) |
17 | df-suc 6403 | . 2 ⊢ suc (card‘𝐴) = ((card‘𝐴) ∪ {(card‘𝐴)}) | |
18 | 16, 17 | breqtrrdi 5208 | 1 ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 class class class wbr 5166 Ord word 6396 suc csuc 6399 ‘cfv 6575 ≈ cen 9002 cardccrd 10006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-ac2 10534 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-er 8765 df-en 9006 df-card 10010 df-ac 10187 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |