| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unsnen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity of a set with a new element added. (Contributed by NM, 7-Nov-2008.) |
| Ref | Expression |
|---|---|
| unsnen.1 | ⊢ 𝐴 ∈ V |
| unsnen.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| unsnen | ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjsn 4693 | . . 3 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
| 2 | cardon 9967 | . . . . . 6 ⊢ (card‘𝐴) ∈ On | |
| 3 | 2 | onordi 6476 | . . . . 5 ⊢ Ord (card‘𝐴) |
| 4 | orddisj 6403 | . . . . 5 ⊢ (Ord (card‘𝐴) → ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅ |
| 6 | unsnen.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 7 | 6 | cardid 10570 | . . . . . 6 ⊢ (card‘𝐴) ≈ 𝐴 |
| 8 | 7 | ensymi 9027 | . . . . 5 ⊢ 𝐴 ≈ (card‘𝐴) |
| 9 | unsnen.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 10 | fvex 6900 | . . . . . 6 ⊢ (card‘𝐴) ∈ V | |
| 11 | en2sn 9064 | . . . . . 6 ⊢ ((𝐵 ∈ V ∧ (card‘𝐴) ∈ V) → {𝐵} ≈ {(card‘𝐴)}) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ {𝐵} ≈ {(card‘𝐴)} |
| 13 | unen 9069 | . . . . 5 ⊢ (((𝐴 ≈ (card‘𝐴) ∧ {𝐵} ≈ {(card‘𝐴)}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) | |
| 14 | 8, 12, 13 | mpanl12 702 | . . . 4 ⊢ (((𝐴 ∩ {𝐵}) = ∅ ∧ ((card‘𝐴) ∩ {(card‘𝐴)}) = ∅) → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) |
| 15 | 5, 14 | mpan2 691 | . . 3 ⊢ ((𝐴 ∩ {𝐵}) = ∅ → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) |
| 16 | 1, 15 | sylbir 235 | . 2 ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ ((card‘𝐴) ∪ {(card‘𝐴)})) |
| 17 | df-suc 6371 | . 2 ⊢ suc (card‘𝐴) = ((card‘𝐴) ∪ {(card‘𝐴)}) | |
| 18 | 16, 17 | breqtrrdi 5167 | 1 ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∪ cun 3931 ∩ cin 3932 ∅c0 4315 {csn 4608 class class class wbr 5125 Ord word 6364 suc csuc 6367 ‘cfv 6542 ≈ cen 8965 cardccrd 9958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-ac2 10486 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-er 8728 df-en 8969 df-card 9962 df-ac 10139 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |