![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordunisssuc | Structured version Visualization version GIF version |
Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003.) |
Ref | Expression |
---|---|
ordunisssuc | ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 3977 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
2 | ordsssuc 6453 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ Ord 𝐵) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) | |
3 | 1, 2 | sylan 579 | . . . 4 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ Ord 𝐵) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) |
4 | 3 | an32s 649 | . . 3 ⊢ (((𝐴 ⊆ On ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) |
5 | 4 | ralbidva 3174 | . 2 ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ suc 𝐵)) |
6 | unissb 4943 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
7 | dfss3 3970 | . 2 ⊢ (𝐴 ⊆ suc 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ suc 𝐵) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ∀wral 3060 ⊆ wss 3948 ∪ cuni 4908 Ord word 6363 Oncon0 6364 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-suc 6370 |
This theorem is referenced by: ordsucuniel 7816 onsucuni 7820 isfinite2 9305 rankbnd2 9868 onintunirab 42279 |
Copyright terms: Public domain | W3C validator |