| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordunisssuc | Structured version Visualization version GIF version | ||
| Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003.) |
| Ref | Expression |
|---|---|
| ordunisssuc | ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 3978 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 2 | ordsssuc 6473 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ Ord 𝐵) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) | |
| 3 | 1, 2 | sylan 580 | . . . 4 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ Ord 𝐵) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) |
| 4 | 3 | an32s 652 | . . 3 ⊢ (((𝐴 ⊆ On ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) |
| 5 | 4 | ralbidva 3176 | . 2 ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ suc 𝐵)) |
| 6 | unissb 4939 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 7 | dfss3 3972 | . 2 ⊢ (𝐴 ⊆ suc 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ suc 𝐵) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 ∪ cuni 4907 Ord word 6383 Oncon0 6384 suc csuc 6386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-suc 6390 |
| This theorem is referenced by: ordsucuniel 7844 onsucuni 7848 isfinite2 9334 rankbnd2 9909 onintunirab 43239 |
| Copyright terms: Public domain | W3C validator |