| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordunisssuc | Structured version Visualization version GIF version | ||
| Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003.) |
| Ref | Expression |
|---|---|
| ordunisssuc | ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 3930 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 2 | ordsssuc 6398 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ Ord 𝐵) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) | |
| 3 | 1, 2 | sylan 580 | . . . 4 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ Ord 𝐵) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) |
| 4 | 3 | an32s 652 | . . 3 ⊢ (((𝐴 ⊆ On ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) |
| 5 | 4 | ralbidva 3150 | . 2 ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ suc 𝐵)) |
| 6 | unissb 4890 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 7 | dfss3 3924 | . 2 ⊢ (𝐴 ⊆ suc 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ suc 𝐵) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 ∪ cuni 4858 Ord word 6306 Oncon0 6307 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-suc 6313 |
| This theorem is referenced by: ordsucuniel 7757 onsucuni 7761 isfinite2 9187 rankbnd2 9765 onintunirab 43220 |
| Copyright terms: Public domain | W3C validator |