MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisssuc Structured version   Visualization version   GIF version

Theorem ordunisssuc 6501
Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordunisssuc ((𝐴 ⊆ On ∧ Ord 𝐵) → ( 𝐴𝐵𝐴 ⊆ suc 𝐵))

Proof of Theorem ordunisssuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel2 4003 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
2 ordsssuc 6484 . . . . 5 ((𝑥 ∈ On ∧ Ord 𝐵) → (𝑥𝐵𝑥 ∈ suc 𝐵))
31, 2sylan 579 . . . 4 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ Ord 𝐵) → (𝑥𝐵𝑥 ∈ suc 𝐵))
43an32s 651 . . 3 (((𝐴 ⊆ On ∧ Ord 𝐵) ∧ 𝑥𝐴) → (𝑥𝐵𝑥 ∈ suc 𝐵))
54ralbidva 3182 . 2 ((𝐴 ⊆ On ∧ Ord 𝐵) → (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ suc 𝐵))
6 unissb 4963 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
7 dfss3 3997 . 2 (𝐴 ⊆ suc 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ suc 𝐵)
85, 6, 73bitr4g 314 1 ((𝐴 ⊆ On ∧ Ord 𝐵) → ( 𝐴𝐵𝐴 ⊆ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wss 3976   cuni 4931  Ord word 6394  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  ordsucuniel  7860  onsucuni  7864  isfinite2  9362  rankbnd2  9938  onintunirab  43188
  Copyright terms: Public domain W3C validator