MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisssuc Structured version   Visualization version   GIF version

Theorem ordunisssuc 6368
Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordunisssuc ((𝐴 ⊆ On ∧ Ord 𝐵) → ( 𝐴𝐵𝐴 ⊆ suc 𝐵))

Proof of Theorem ordunisssuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel2 3916 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
2 ordsssuc 6352 . . . . 5 ((𝑥 ∈ On ∧ Ord 𝐵) → (𝑥𝐵𝑥 ∈ suc 𝐵))
31, 2sylan 580 . . . 4 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ Ord 𝐵) → (𝑥𝐵𝑥 ∈ suc 𝐵))
43an32s 649 . . 3 (((𝐴 ⊆ On ∧ Ord 𝐵) ∧ 𝑥𝐴) → (𝑥𝐵𝑥 ∈ suc 𝐵))
54ralbidva 3111 . 2 ((𝐴 ⊆ On ∧ Ord 𝐵) → (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ suc 𝐵))
6 unissb 4873 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
7 dfss3 3909 . 2 (𝐴 ⊆ suc 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ suc 𝐵)
85, 6, 73bitr4g 314 1 ((𝐴 ⊆ On ∧ Ord 𝐵) → ( 𝐴𝐵𝐴 ⊆ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wral 3064  wss 3887   cuni 4839  Ord word 6265  Oncon0 6266  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-suc 6272
This theorem is referenced by:  ordsucuniel  7671  onsucuni  7675  isfinite2  9072  rankbnd2  9627
  Copyright terms: Public domain W3C validator