MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisssuc Structured version   Visualization version   GIF version

Theorem ordunisssuc 6443
Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordunisssuc ((𝐴 ⊆ On ∧ Ord 𝐵) → ( 𝐴𝐵𝐴 ⊆ suc 𝐵))

Proof of Theorem ordunisssuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel2 3944 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
2 ordsssuc 6426 . . . . 5 ((𝑥 ∈ On ∧ Ord 𝐵) → (𝑥𝐵𝑥 ∈ suc 𝐵))
31, 2sylan 580 . . . 4 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ Ord 𝐵) → (𝑥𝐵𝑥 ∈ suc 𝐵))
43an32s 652 . . 3 (((𝐴 ⊆ On ∧ Ord 𝐵) ∧ 𝑥𝐴) → (𝑥𝐵𝑥 ∈ suc 𝐵))
54ralbidva 3155 . 2 ((𝐴 ⊆ On ∧ Ord 𝐵) → (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ suc 𝐵))
6 unissb 4906 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
7 dfss3 3938 . 2 (𝐴 ⊆ suc 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ suc 𝐵)
85, 6, 73bitr4g 314 1 ((𝐴 ⊆ On ∧ Ord 𝐵) → ( 𝐴𝐵𝐴 ⊆ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045  wss 3917   cuni 4874  Ord word 6334  Oncon0 6335  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-suc 6341
This theorem is referenced by:  ordsucuniel  7802  onsucuni  7806  isfinite2  9252  rankbnd2  9829  onintunirab  43223
  Copyright terms: Public domain W3C validator