| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordunisssuc | Structured version Visualization version GIF version | ||
| Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003.) |
| Ref | Expression |
|---|---|
| ordunisssuc | ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 3938 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 2 | ordsssuc 6411 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ Ord 𝐵) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) | |
| 3 | 1, 2 | sylan 580 | . . . 4 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ Ord 𝐵) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) |
| 4 | 3 | an32s 652 | . . 3 ⊢ (((𝐴 ⊆ On ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) |
| 5 | 4 | ralbidva 3154 | . 2 ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ suc 𝐵)) |
| 6 | unissb 4899 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 7 | dfss3 3932 | . 2 ⊢ (𝐴 ⊆ suc 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ suc 𝐵) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ∪ cuni 4867 Ord word 6319 Oncon0 6320 suc csuc 6322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-suc 6326 |
| This theorem is referenced by: ordsucuniel 7779 onsucuni 7783 isfinite2 9221 rankbnd2 9798 onintunirab 43209 |
| Copyright terms: Public domain | W3C validator |