| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordunisssuc | Structured version Visualization version GIF version | ||
| Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003.) |
| Ref | Expression |
|---|---|
| ordunisssuc | ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 3958 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 2 | ordsssuc 6448 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ Ord 𝐵) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) | |
| 3 | 1, 2 | sylan 580 | . . . 4 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ Ord 𝐵) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) |
| 4 | 3 | an32s 652 | . . 3 ⊢ (((𝐴 ⊆ On ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) |
| 5 | 4 | ralbidva 3162 | . 2 ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ suc 𝐵)) |
| 6 | unissb 4920 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 7 | dfss3 3952 | . 2 ⊢ (𝐴 ⊆ suc 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ suc 𝐵) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ ((𝐴 ⊆ On ∧ Ord 𝐵) → (∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 ∪ cuni 4888 Ord word 6356 Oncon0 6357 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 |
| This theorem is referenced by: ordsucuniel 7823 onsucuni 7827 isfinite2 9311 rankbnd2 9888 onintunirab 43218 |
| Copyright terms: Public domain | W3C validator |