MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankbnd2 Structured version   Visualization version   GIF version

Theorem rankbnd2 9615
Description: The rank of a set is bounded by the successor of a bound for its members. (Contributed by NM, 15-Sep-2006.)
Hypothesis
Ref Expression
rankr1b.1 𝐴 ∈ V
Assertion
Ref Expression
rankbnd2 (𝐵 ∈ On → (∀𝑥𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rankbnd2
StepHypRef Expression
1 rankuni 9609 . . . . 5 (rank‘ 𝐴) = (rank‘𝐴)
2 rankr1b.1 . . . . . 6 𝐴 ∈ V
32rankuni2 9601 . . . . 5 (rank‘ 𝐴) = 𝑥𝐴 (rank‘𝑥)
41, 3eqtr3i 2768 . . . 4 (rank‘𝐴) = 𝑥𝐴 (rank‘𝑥)
54sseq1i 3949 . . 3 ( (rank‘𝐴) ⊆ 𝐵 𝑥𝐴 (rank‘𝑥) ⊆ 𝐵)
6 iunss 4975 . . 3 ( 𝑥𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ ∀𝑥𝐴 (rank‘𝑥) ⊆ 𝐵)
75, 6bitr2i 275 . 2 (∀𝑥𝐴 (rank‘𝑥) ⊆ 𝐵 (rank‘𝐴) ⊆ 𝐵)
8 rankon 9541 . . . 4 (rank‘𝐴) ∈ On
98onssi 7675 . . 3 (rank‘𝐴) ⊆ On
10 eloni 6270 . . 3 (𝐵 ∈ On → Ord 𝐵)
11 ordunisssuc 6362 . . 3 (((rank‘𝐴) ⊆ On ∧ Ord 𝐵) → ( (rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵))
129, 10, 11sylancr 587 . 2 (𝐵 ∈ On → ( (rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵))
137, 12bitrid 282 1 (𝐵 ∈ On → (∀𝑥𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wral 3064  Vcvv 3430  wss 3887   cuni 4840   ciun 4925  Ord word 6259  Oncon0 6260  suc csuc 6262  cfv 6427  rankcrnk 9509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-reg 9339  ax-inf2 9387
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-om 7704  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-r1 9510  df-rank 9511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator