MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankbnd2 Structured version   Visualization version   GIF version

Theorem rankbnd2 9859
Description: The rank of a set is bounded by the successor of a bound for its members. (Contributed by NM, 15-Sep-2006.)
Hypothesis
Ref Expression
rankr1b.1 𝐴 ∈ V
Assertion
Ref Expression
rankbnd2 (𝐡 ∈ On β†’ (βˆ€π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† 𝐡 ↔ (rankβ€˜π΄) βŠ† suc 𝐡))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡

Proof of Theorem rankbnd2
StepHypRef Expression
1 rankuni 9853 . . . . 5 (rankβ€˜βˆͺ 𝐴) = βˆͺ (rankβ€˜π΄)
2 rankr1b.1 . . . . . 6 𝐴 ∈ V
32rankuni2 9845 . . . . 5 (rankβ€˜βˆͺ 𝐴) = βˆͺ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯)
41, 3eqtr3i 2754 . . . 4 βˆͺ (rankβ€˜π΄) = βˆͺ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯)
54sseq1i 4002 . . 3 (βˆͺ (rankβ€˜π΄) βŠ† 𝐡 ↔ βˆͺ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† 𝐡)
6 iunss 5038 . . 3 (βˆͺ π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† 𝐡 ↔ βˆ€π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† 𝐡)
75, 6bitr2i 276 . 2 (βˆ€π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† 𝐡 ↔ βˆͺ (rankβ€˜π΄) βŠ† 𝐡)
8 rankon 9785 . . . 4 (rankβ€˜π΄) ∈ On
98onssi 7819 . . 3 (rankβ€˜π΄) βŠ† On
10 eloni 6364 . . 3 (𝐡 ∈ On β†’ Ord 𝐡)
11 ordunisssuc 6460 . . 3 (((rankβ€˜π΄) βŠ† On ∧ Ord 𝐡) β†’ (βˆͺ (rankβ€˜π΄) βŠ† 𝐡 ↔ (rankβ€˜π΄) βŠ† suc 𝐡))
129, 10, 11sylancr 586 . 2 (𝐡 ∈ On β†’ (βˆͺ (rankβ€˜π΄) βŠ† 𝐡 ↔ (rankβ€˜π΄) βŠ† suc 𝐡))
137, 12bitrid 283 1 (𝐡 ∈ On β†’ (βˆ€π‘₯ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† 𝐡 ↔ (rankβ€˜π΄) βŠ† suc 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∈ wcel 2098  βˆ€wral 3053  Vcvv 3466   βŠ† wss 3940  βˆͺ cuni 4899  βˆͺ ciun 4987  Ord word 6353  Oncon0 6354  suc csuc 6356  β€˜cfv 6533  rankcrnk 9753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-reg 9582  ax-inf2 9631
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-r1 9754  df-rank 9755
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator