MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankbnd2 Structured version   Visualization version   GIF version

Theorem rankbnd2 9798
Description: The rank of a set is bounded by the successor of a bound for its members. (Contributed by NM, 15-Sep-2006.)
Hypothesis
Ref Expression
rankr1b.1 𝐴 ∈ V
Assertion
Ref Expression
rankbnd2 (𝐵 ∈ On → (∀𝑥𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rankbnd2
StepHypRef Expression
1 rankuni 9792 . . . . 5 (rank‘ 𝐴) = (rank‘𝐴)
2 rankr1b.1 . . . . . 6 𝐴 ∈ V
32rankuni2 9784 . . . . 5 (rank‘ 𝐴) = 𝑥𝐴 (rank‘𝑥)
41, 3eqtr3i 2754 . . . 4 (rank‘𝐴) = 𝑥𝐴 (rank‘𝑥)
54sseq1i 3972 . . 3 ( (rank‘𝐴) ⊆ 𝐵 𝑥𝐴 (rank‘𝑥) ⊆ 𝐵)
6 iunss 5004 . . 3 ( 𝑥𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ ∀𝑥𝐴 (rank‘𝑥) ⊆ 𝐵)
75, 6bitr2i 276 . 2 (∀𝑥𝐴 (rank‘𝑥) ⊆ 𝐵 (rank‘𝐴) ⊆ 𝐵)
8 rankon 9724 . . . 4 (rank‘𝐴) ∈ On
98onssi 7793 . . 3 (rank‘𝐴) ⊆ On
10 eloni 6330 . . 3 (𝐵 ∈ On → Ord 𝐵)
11 ordunisssuc 6428 . . 3 (((rank‘𝐴) ⊆ On ∧ Ord 𝐵) → ( (rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵))
129, 10, 11sylancr 587 . 2 (𝐵 ∈ On → ( (rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵))
137, 12bitrid 283 1 (𝐵 ∈ On → (∀𝑥𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3044  Vcvv 3444  wss 3911   cuni 4867   ciun 4951  Ord word 6319  Oncon0 6320  suc csuc 6322  cfv 6499  rankcrnk 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693  df-rank 9694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator