![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankbnd2 | Structured version Visualization version GIF version |
Description: The rank of a set is bounded by the successor of a bound for its members. (Contributed by NM, 15-Sep-2006.) |
Ref | Expression |
---|---|
rankr1b.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rankbnd2 | ⊢ (𝐵 ∈ On → (∀𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankuni 9901 | . . . . 5 ⊢ (rank‘∪ 𝐴) = ∪ (rank‘𝐴) | |
2 | rankr1b.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
3 | 2 | rankuni2 9893 | . . . . 5 ⊢ (rank‘∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) |
4 | 1, 3 | eqtr3i 2765 | . . . 4 ⊢ ∪ (rank‘𝐴) = ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) |
5 | 4 | sseq1i 4024 | . . 3 ⊢ (∪ (rank‘𝐴) ⊆ 𝐵 ↔ ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵) |
6 | iunss 5050 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵) | |
7 | 5, 6 | bitr2i 276 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ ∪ (rank‘𝐴) ⊆ 𝐵) |
8 | rankon 9833 | . . . 4 ⊢ (rank‘𝐴) ∈ On | |
9 | 8 | onssi 7858 | . . 3 ⊢ (rank‘𝐴) ⊆ On |
10 | eloni 6396 | . . 3 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
11 | ordunisssuc 6492 | . . 3 ⊢ (((rank‘𝐴) ⊆ On ∧ Ord 𝐵) → (∪ (rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵)) | |
12 | 9, 10, 11 | sylancr 587 | . 2 ⊢ (𝐵 ∈ On → (∪ (rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵)) |
13 | 7, 12 | bitrid 283 | 1 ⊢ (𝐵 ∈ On → (∀𝑥 ∈ 𝐴 (rank‘𝑥) ⊆ 𝐵 ↔ (rank‘𝐴) ⊆ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 ∪ cuni 4912 ∪ ciun 4996 Ord word 6385 Oncon0 6386 suc csuc 6388 ‘cfv 6563 rankcrnk 9801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-reg 9630 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-r1 9802 df-rank 9803 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |