MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteqimp Structured version   Visualization version   GIF version

Theorem oteqimp 7690
Description: The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
Assertion
Ref Expression
oteqimp (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((1st ‘(1st𝑇)) = 𝐴 ∧ (2nd ‘(1st𝑇)) = 𝐵 ∧ (2nd𝑇) = 𝐶)))

Proof of Theorem oteqimp
StepHypRef Expression
1 ot1stg 7685 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴)
2 ot2ndg 7686 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵)
3 ot3rdg 7687 . . . 4 (𝐶𝑍 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)
433ad2ant3 1132 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)
51, 2, 43jca 1125 . 2 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴 ∧ (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵 ∧ (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶))
6 2fveq3 6650 . . . 4 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (1st ‘(1st𝑇)) = (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)))
76eqeq1d 2800 . . 3 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((1st ‘(1st𝑇)) = 𝐴 ↔ (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴))
8 2fveq3 6650 . . . 4 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (2nd ‘(1st𝑇)) = (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)))
98eqeq1d 2800 . . 3 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((2nd ‘(1st𝑇)) = 𝐵 ↔ (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵))
10 fveqeq2 6654 . . 3 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((2nd𝑇) = 𝐶 ↔ (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶))
117, 9, 103anbi123d 1433 . 2 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (((1st ‘(1st𝑇)) = 𝐴 ∧ (2nd ‘(1st𝑇)) = 𝐵 ∧ (2nd𝑇) = 𝐶) ↔ ((1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴 ∧ (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵 ∧ (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)))
125, 11syl5ibr 249 1 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((1st ‘(1st𝑇)) = 𝐴 ∧ (2nd ‘(1st𝑇)) = 𝐵 ∧ (2nd𝑇) = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  cotp 4533  cfv 6324  1st c1st 7669  2nd c2nd 7670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-ot 4534  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fv 6332  df-1st 7671  df-2nd 7672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator