![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteqimp | Structured version Visualization version GIF version |
Description: The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018.) |
Ref | Expression |
---|---|
oteqimp | ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ot1stg 8027 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) | |
2 | ot2ndg 8028 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) | |
3 | ot3rdg 8029 | . . . 4 ⊢ (𝐶 ∈ 𝑍 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) | |
4 | 3 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) |
5 | 1, 2, 4 | 3jca 1127 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴 ∧ (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵 ∧ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶)) |
6 | 2fveq3 6912 | . . . 4 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (1st ‘(1st ‘𝑇)) = (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉))) | |
7 | 6 | eqeq1d 2737 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((1st ‘(1st ‘𝑇)) = 𝐴 ↔ (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴)) |
8 | 2fveq3 6912 | . . . 4 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (2nd ‘(1st ‘𝑇)) = (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉))) | |
9 | 8 | eqeq1d 2737 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((2nd ‘(1st ‘𝑇)) = 𝐵 ↔ (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵)) |
10 | fveqeq2 6916 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((2nd ‘𝑇) = 𝐶 ↔ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶)) | |
11 | 7, 9, 10 | 3anbi123d 1435 | . 2 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶) ↔ ((1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴 ∧ (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵 ∧ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶))) |
12 | 5, 11 | imbitrrid 246 | 1 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 〈cotp 4639 ‘cfv 6563 1st c1st 8011 2nd c2nd 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-ot 4640 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-1st 8013 df-2nd 8014 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |