MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteqimp Structured version   Visualization version   GIF version

Theorem oteqimp 8049
Description: The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
Assertion
Ref Expression
oteqimp (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((1st ‘(1st𝑇)) = 𝐴 ∧ (2nd ‘(1st𝑇)) = 𝐵 ∧ (2nd𝑇) = 𝐶)))

Proof of Theorem oteqimp
StepHypRef Expression
1 ot1stg 8044 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴)
2 ot2ndg 8045 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵)
3 ot3rdg 8046 . . . 4 (𝐶𝑍 → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)
433ad2ant3 1135 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)
51, 2, 43jca 1128 . 2 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴 ∧ (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵 ∧ (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶))
6 2fveq3 6925 . . . 4 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (1st ‘(1st𝑇)) = (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)))
76eqeq1d 2742 . . 3 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((1st ‘(1st𝑇)) = 𝐴 ↔ (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴))
8 2fveq3 6925 . . . 4 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (2nd ‘(1st𝑇)) = (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)))
98eqeq1d 2742 . . 3 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((2nd ‘(1st𝑇)) = 𝐵 ↔ (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵))
10 fveqeq2 6929 . . 3 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((2nd𝑇) = 𝐶 ↔ (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶))
117, 9, 103anbi123d 1436 . 2 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (((1st ‘(1st𝑇)) = 𝐴 ∧ (2nd ‘(1st𝑇)) = 𝐵 ∧ (2nd𝑇) = 𝐶) ↔ ((1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴 ∧ (2nd ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐵 ∧ (2nd ‘⟨𝐴, 𝐵, 𝐶⟩) = 𝐶)))
125, 11imbitrrid 246 1 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((1st ‘(1st𝑇)) = 𝐴 ∧ (2nd ‘(1st𝑇)) = 𝐵 ∧ (2nd𝑇) = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  cotp 4656  cfv 6573  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator