![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteqimp | Structured version Visualization version GIF version |
Description: The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018.) |
Ref | Expression |
---|---|
oteqimp | ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ot1stg 8044 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) | |
2 | ot2ndg 8045 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) | |
3 | ot3rdg 8046 | . . . 4 ⊢ (𝐶 ∈ 𝑍 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) | |
4 | 3 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) |
5 | 1, 2, 4 | 3jca 1128 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴 ∧ (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵 ∧ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶)) |
6 | 2fveq3 6925 | . . . 4 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (1st ‘(1st ‘𝑇)) = (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉))) | |
7 | 6 | eqeq1d 2742 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((1st ‘(1st ‘𝑇)) = 𝐴 ↔ (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴)) |
8 | 2fveq3 6925 | . . . 4 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (2nd ‘(1st ‘𝑇)) = (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉))) | |
9 | 8 | eqeq1d 2742 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((2nd ‘(1st ‘𝑇)) = 𝐵 ↔ (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵)) |
10 | fveqeq2 6929 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((2nd ‘𝑇) = 𝐶 ↔ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶)) | |
11 | 7, 9, 10 | 3anbi123d 1436 | . 2 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶) ↔ ((1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴 ∧ (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵 ∧ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶))) |
12 | 5, 11 | imbitrrid 246 | 1 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cotp 4656 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |