|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > oteqimp | Structured version Visualization version GIF version | ||
| Description: The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| oteqimp | ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ot1stg 8028 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) | |
| 2 | ot2ndg 8029 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) | |
| 3 | ot3rdg 8030 | . . . 4 ⊢ (𝐶 ∈ 𝑍 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) | |
| 4 | 3 | 3ad2ant3 1136 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) | 
| 5 | 1, 2, 4 | 3jca 1129 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴 ∧ (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵 ∧ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶)) | 
| 6 | 2fveq3 6911 | . . . 4 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (1st ‘(1st ‘𝑇)) = (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉))) | |
| 7 | 6 | eqeq1d 2739 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((1st ‘(1st ‘𝑇)) = 𝐴 ↔ (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴)) | 
| 8 | 2fveq3 6911 | . . . 4 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (2nd ‘(1st ‘𝑇)) = (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉))) | |
| 9 | 8 | eqeq1d 2739 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((2nd ‘(1st ‘𝑇)) = 𝐵 ↔ (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵)) | 
| 10 | fveqeq2 6915 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((2nd ‘𝑇) = 𝐶 ↔ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶)) | |
| 11 | 7, 9, 10 | 3anbi123d 1438 | . 2 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶) ↔ ((1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴 ∧ (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵 ∧ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶))) | 
| 12 | 5, 11 | imbitrrid 246 | 1 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 〈cotp 4634 ‘cfv 6561 1st c1st 8012 2nd c2nd 8013 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-ot 4635 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fv 6569 df-1st 8014 df-2nd 8015 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |