![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteqimp | Structured version Visualization version GIF version |
Description: The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018.) |
Ref | Expression |
---|---|
oteqimp | ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ot1stg 7415 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) | |
2 | ot2ndg 7416 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) | |
3 | ot3rdg 7417 | . . . 4 ⊢ (𝐶 ∈ 𝑍 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) | |
4 | 3 | 3ad2ant3 1166 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) |
5 | 1, 2, 4 | 3jca 1159 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴 ∧ (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵 ∧ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶)) |
6 | 2fveq3 6416 | . . . 4 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (1st ‘(1st ‘𝑇)) = (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉))) | |
7 | 6 | eqeq1d 2801 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((1st ‘(1st ‘𝑇)) = 𝐴 ↔ (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴)) |
8 | 2fveq3 6416 | . . . 4 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (2nd ‘(1st ‘𝑇)) = (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉))) | |
9 | 8 | eqeq1d 2801 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((2nd ‘(1st ‘𝑇)) = 𝐵 ↔ (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵)) |
10 | fveqeq2 6420 | . . 3 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((2nd ‘𝑇) = 𝐶 ↔ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶)) | |
11 | 7, 9, 10 | 3anbi123d 1561 | . 2 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → (((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶) ↔ ((1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴 ∧ (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵 ∧ (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶))) |
12 | 5, 11 | syl5ibr 238 | 1 ⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 〈cotp 4376 ‘cfv 6101 1st c1st 7399 2nd c2nd 7400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-ot 4377 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-iota 6064 df-fun 6103 df-fv 6109 df-1st 7401 df-2nd 7402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |