Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvconst2 | Structured version Visualization version GIF version |
Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.) |
Ref | Expression |
---|---|
fvconst2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvconst2 | ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvconst2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | fvconst2g 7086 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3433 {csn 4562 × cxp 5588 ‘cfv 6437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-fv 6445 |
This theorem is referenced by: ovconst2 7461 mapsncnv 8690 ofsubeq0 11979 ofsubge0 11981 ser0f 13785 hashinf 14058 iserge0 15381 iseraltlem1 15402 sum0 15442 sumz 15443 harmonic 15580 prodf1f 15613 fprodntriv 15661 prod1 15663 setcmon 17811 0mhm 18467 mulgfval 18711 mulgpropd 18754 dprdsubg 19636 0lmhm 20311 frlmlmod 20965 frlmlss 20967 frlmbas 20971 frlmip 20994 islindf4 21054 mplsubglem 21214 coe1tm 21453 mdetuni0 21779 txkgen 22812 xkofvcn 22844 nmo0 23908 pcorevlem 24198 rrxip 24563 mbfpos 24824 0pval 24844 0pledm 24846 xrge0f 24905 itg2ge0 24909 ibl0 24960 bddibl 25013 dvcmul 25117 dvef 25153 rolle 25163 dveq0 25173 dv11cn 25174 ftc2 25217 tdeglem4 25233 tdeglem4OLD 25234 ply1rem 25337 fta1g 25341 fta1blem 25342 0dgrb 25416 dgrnznn 25417 dgrlt 25436 plymul0or 25450 plydivlem4 25465 plyrem 25474 fta1 25477 vieta1lem2 25480 elqaalem3 25490 aaliou2 25509 ulmdvlem1 25568 dchrelbas2 26394 dchrisumlem3 26648 axlowdimlem9 27327 axlowdimlem12 27330 axlowdimlem17 27335 0oval 29159 occllem 29674 ho01i 30199 0cnfn 30351 0lnfn 30356 nmfn0 30358 nlelchi 30432 opsqrlem2 30512 opsqrlem4 30514 opsqrlem5 30515 hmopidmchi 30522 elrspunidl 31615 lbsdiflsp0 31716 breprexpnat 32623 circlemethnat 32630 circlevma 32631 connpconn 33206 txsconnlem 33211 cvxsconn 33214 cvmliftphtlem 33288 noetasuplem4 33948 noetainflem4 33952 fullfunfv 34258 matunitlindflem1 35782 matunitlindflem2 35783 ptrecube 35786 poimirlem1 35787 poimirlem2 35788 poimirlem3 35789 poimirlem4 35790 poimirlem5 35791 poimirlem6 35792 poimirlem7 35793 poimirlem10 35796 poimirlem11 35797 poimirlem12 35798 poimirlem16 35802 poimirlem17 35803 poimirlem19 35805 poimirlem20 35806 poimirlem22 35808 poimirlem23 35809 poimirlem28 35814 poimirlem29 35815 poimirlem30 35816 poimirlem31 35817 poimirlem32 35818 poimir 35819 broucube 35820 mblfinlem2 35824 itg2addnclem 35837 itg2addnc 35840 ftc1anclem5 35863 ftc2nc 35868 cnpwstotbnd 35964 lfl0f 37090 eqlkr2 37121 lcd0vvalN 39634 frlm0vald 40269 pwspjmhmmgpd 40274 mhphf 40292 mzpsubst 40577 mzpcompact2lem 40580 mzpcong 40801 hbtlem2 40956 mncn0 40971 mpaaeu 40982 aaitgo 40994 rngunsnply 41005 hashnzfzclim 41947 ofsubid 41949 dvconstbi 41959 binomcxplemnotnn0 41981 n0p 42598 snelmap 42639 fvconst0ci 46197 fvconstdomi 46198 aacllem 46516 |
Copyright terms: Public domain | W3C validator |