| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvconst2 | Structured version Visualization version GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.) |
| Ref | Expression |
|---|---|
| fvconst2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvconst2 | ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | fvconst2g 7142 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {csn 4579 × cxp 5621 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: ovconst2 7533 mapsncnv 8827 ofsubeq0 12143 ofsubge0 12145 ser0f 13980 hashinf 14260 iserge0 15586 iseraltlem1 15607 sum0 15646 sumz 15647 harmonic 15784 prodf1f 15817 fprodntriv 15867 prod1 15869 setcmon 18012 0mhm 18711 mulgfval 18966 mulgpropd 19013 dprdsubg 19923 pwspjmhmmgpd 20231 0lmhm 20962 frlmlmod 21674 frlmlss 21676 frlmbas 21680 frlmip 21703 islindf4 21763 mplsubglem 21924 psdmvr 22072 coe1tm 22175 evls1maprnss 22281 mdetuni0 22524 txkgen 23555 xkofvcn 23587 nmo0 24639 pcorevlem 24942 rrxip 25306 mbfpos 25568 0pval 25588 0pledm 25590 xrge0f 25648 itg2ge0 25652 ibl0 25704 bddibl 25757 dvcmul 25863 dvef 25900 rolle 25910 dveq0 25921 dv11cn 25922 ftc2 25967 tdeglem4 25981 ply1rem 26087 fta1g 26091 fta1blem 26092 0dgrb 26167 dgrnznn 26168 dgrlt 26188 plymul0or 26204 plydivlem4 26220 plyrem 26229 fta1 26232 vieta1lem2 26235 elqaalem3 26245 aaliou2 26264 ulmdvlem1 26325 dchrelbas2 27164 dchrisumlem3 27418 noetasuplem4 27664 noetainflem4 27668 axlowdimlem9 28913 axlowdimlem12 28916 axlowdimlem17 28921 0oval 30750 occllem 31265 ho01i 31790 0cnfn 31942 0lnfn 31947 nmfn0 31949 nlelchi 32023 opsqrlem2 32103 opsqrlem4 32105 opsqrlem5 32106 hmopidmchi 32113 elrspunidl 33375 coe1zfv 33532 lbsdiflsp0 33598 breprexpnat 34601 circlemethnat 34608 circlevma 34609 connpconn 35207 txsconnlem 35212 cvxsconn 35215 cvmliftphtlem 35289 fullfunfv 35920 matunitlindflem1 37595 matunitlindflem2 37596 ptrecube 37599 poimirlem1 37600 poimirlem2 37601 poimirlem3 37602 poimirlem4 37603 poimirlem5 37604 poimirlem6 37605 poimirlem7 37606 poimirlem10 37609 poimirlem11 37610 poimirlem12 37611 poimirlem16 37615 poimirlem17 37616 poimirlem19 37618 poimirlem20 37619 poimirlem22 37621 poimirlem23 37622 poimirlem28 37627 poimirlem29 37628 poimirlem30 37629 poimirlem31 37630 poimirlem32 37631 poimir 37632 broucube 37633 mblfinlem2 37637 itg2addnclem 37650 itg2addnc 37653 ftc1anclem5 37676 ftc2nc 37681 cnpwstotbnd 37776 lfl0f 39047 eqlkr2 39078 lcd0vvalN 41592 frlm0vald 42512 evlsvvval 42536 selvvvval 42558 evlselv 42560 mzpsubst 42721 mzpcompact2lem 42724 mzpcong 42945 hbtlem2 43097 mncn0 43112 mpaaeu 43123 aaitgo 43135 rngunsnply 43142 cantnfresb 43297 hashnzfzclim 44295 ofsubid 44297 dvconstbi 44307 binomcxplemnotnn0 44329 n0p 45023 snelmap 45060 cjnpoly 46874 sinnpoly 46876 fvconst0ci 48876 fvconstdomi 48877 islmd 49651 iscmd 49652 aacllem 49787 |
| Copyright terms: Public domain | W3C validator |