| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvconst2 | Structured version Visualization version GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.) |
| Ref | Expression |
|---|---|
| fvconst2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvconst2 | ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | fvconst2g 7136 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 × cxp 5614 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: ovconst2 7526 mapsncnv 8817 ofsubeq0 12119 ofsubge0 12121 ser0f 13959 hashinf 14239 iserge0 15565 iseraltlem1 15586 sum0 15625 sumz 15626 harmonic 15763 prodf1f 15796 fprodntriv 15846 prod1 15848 setcmon 17991 0mhm 18724 mulgfval 18979 mulgpropd 19026 dprdsubg 19936 pwspjmhmmgpd 20244 0lmhm 20972 frlmlmod 21684 frlmlss 21686 frlmbas 21690 frlmip 21713 islindf4 21773 mplsubglem 21934 psdmvr 22082 coe1tm 22185 evls1maprnss 22291 mdetuni0 22534 txkgen 23565 xkofvcn 23597 nmo0 24648 pcorevlem 24951 rrxip 25315 mbfpos 25577 0pval 25597 0pledm 25599 xrge0f 25657 itg2ge0 25661 ibl0 25713 bddibl 25766 dvcmul 25872 dvef 25909 rolle 25919 dveq0 25930 dv11cn 25931 ftc2 25976 tdeglem4 25990 ply1rem 26096 fta1g 26100 fta1blem 26101 0dgrb 26176 dgrnznn 26177 dgrlt 26197 plymul0or 26213 plydivlem4 26229 plyrem 26238 fta1 26241 vieta1lem2 26244 elqaalem3 26254 aaliou2 26273 ulmdvlem1 26334 dchrelbas2 27173 dchrisumlem3 27427 noetasuplem4 27673 noetainflem4 27677 axlowdimlem9 28926 axlowdimlem12 28929 axlowdimlem17 28934 0oval 30763 occllem 31278 ho01i 31803 0cnfn 31955 0lnfn 31960 nmfn0 31962 nlelchi 32036 opsqrlem2 32116 opsqrlem4 32118 opsqrlem5 32119 hmopidmchi 32126 elrspunidl 33388 coe1zfv 33546 mplvrpmmhm 33571 lbsdiflsp0 33634 breprexpnat 34642 circlemethnat 34649 circlevma 34650 connpconn 35267 txsconnlem 35272 cvxsconn 35275 cvmliftphtlem 35349 fullfunfv 35980 matunitlindflem1 37655 matunitlindflem2 37656 ptrecube 37659 poimirlem1 37660 poimirlem2 37661 poimirlem3 37662 poimirlem4 37663 poimirlem5 37664 poimirlem6 37665 poimirlem7 37666 poimirlem10 37669 poimirlem11 37670 poimirlem12 37671 poimirlem16 37675 poimirlem17 37676 poimirlem19 37678 poimirlem20 37679 poimirlem22 37681 poimirlem23 37682 poimirlem28 37687 poimirlem29 37688 poimirlem30 37689 poimirlem31 37690 poimirlem32 37691 poimir 37692 broucube 37693 mblfinlem2 37697 itg2addnclem 37710 itg2addnc 37713 ftc1anclem5 37736 ftc2nc 37741 cnpwstotbnd 37836 lfl0f 39107 eqlkr2 39138 lcd0vvalN 41651 frlm0vald 42571 evlsvvval 42595 selvvvval 42617 evlselv 42619 mzpsubst 42780 mzpcompact2lem 42783 mzpcong 43004 hbtlem2 43156 mncn0 43171 mpaaeu 43182 aaitgo 43194 rngunsnply 43201 cantnfresb 43356 hashnzfzclim 44354 ofsubid 44356 dvconstbi 44366 binomcxplemnotnn0 44388 n0p 45081 snelmap 45118 cjnpoly 46919 sinnpoly 46921 fvconst0ci 48921 fvconstdomi 48922 islmd 49696 iscmd 49697 aacllem 49832 |
| Copyright terms: Public domain | W3C validator |