| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvconst2 | Structured version Visualization version GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.) |
| Ref | Expression |
|---|---|
| fvconst2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvconst2 | ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | fvconst2g 7199 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 × cxp 5657 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 |
| This theorem is referenced by: ovconst2 7592 mapsncnv 8912 ofsubeq0 12242 ofsubge0 12244 ser0f 14078 hashinf 14358 iserge0 15682 iseraltlem1 15703 sum0 15742 sumz 15743 harmonic 15880 prodf1f 15913 fprodntriv 15963 prod1 15965 setcmon 18105 0mhm 18802 mulgfval 19057 mulgpropd 19104 dprdsubg 20012 pwspjmhmmgpd 20293 0lmhm 21003 frlmlmod 21714 frlmlss 21716 frlmbas 21720 frlmip 21743 islindf4 21803 mplsubglem 21964 psdmvr 22112 coe1tm 22215 evls1maprnss 22321 mdetuni0 22564 txkgen 23595 xkofvcn 23627 nmo0 24679 pcorevlem 24982 rrxip 25347 mbfpos 25609 0pval 25629 0pledm 25631 xrge0f 25689 itg2ge0 25693 ibl0 25745 bddibl 25798 dvcmul 25904 dvef 25941 rolle 25951 dveq0 25962 dv11cn 25963 ftc2 26008 tdeglem4 26022 ply1rem 26128 fta1g 26132 fta1blem 26133 0dgrb 26208 dgrnznn 26209 dgrlt 26229 plymul0or 26245 plydivlem4 26261 plyrem 26270 fta1 26273 vieta1lem2 26276 elqaalem3 26286 aaliou2 26305 ulmdvlem1 26366 dchrelbas2 27205 dchrisumlem3 27459 noetasuplem4 27705 noetainflem4 27709 axlowdimlem9 28934 axlowdimlem12 28937 axlowdimlem17 28942 0oval 30774 occllem 31289 ho01i 31814 0cnfn 31966 0lnfn 31971 nmfn0 31973 nlelchi 32047 opsqrlem2 32127 opsqrlem4 32129 opsqrlem5 32130 hmopidmchi 32137 elrspunidl 33448 coe1zfv 33605 lbsdiflsp0 33671 breprexpnat 34671 circlemethnat 34678 circlevma 34679 connpconn 35262 txsconnlem 35267 cvxsconn 35270 cvmliftphtlem 35344 fullfunfv 35970 matunitlindflem1 37645 matunitlindflem2 37646 ptrecube 37649 poimirlem1 37650 poimirlem2 37651 poimirlem3 37652 poimirlem4 37653 poimirlem5 37654 poimirlem6 37655 poimirlem7 37656 poimirlem10 37659 poimirlem11 37660 poimirlem12 37661 poimirlem16 37665 poimirlem17 37666 poimirlem19 37668 poimirlem20 37669 poimirlem22 37671 poimirlem23 37672 poimirlem28 37677 poimirlem29 37678 poimirlem30 37679 poimirlem31 37680 poimirlem32 37681 poimir 37682 broucube 37683 mblfinlem2 37687 itg2addnclem 37700 itg2addnc 37703 ftc1anclem5 37726 ftc2nc 37731 cnpwstotbnd 37826 lfl0f 39092 eqlkr2 39123 lcd0vvalN 41637 frlm0vald 42537 evlsvvval 42561 selvvvval 42583 evlselv 42585 mzpsubst 42746 mzpcompact2lem 42749 mzpcong 42971 hbtlem2 43123 mncn0 43138 mpaaeu 43149 aaitgo 43161 rngunsnply 43168 cantnfresb 43323 hashnzfzclim 44321 ofsubid 44323 dvconstbi 44333 binomcxplemnotnn0 44355 n0p 45049 snelmap 45086 fvconst0ci 48846 fvconstdomi 48847 islmd 49515 iscmd 49516 aacllem 49645 |
| Copyright terms: Public domain | W3C validator |