![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvconst2 | Structured version Visualization version GIF version |
Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.) |
Ref | Expression |
---|---|
fvconst2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvconst2 | ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvconst2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | fvconst2g 7221 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 Vcvv 3477 {csn 4630 × cxp 5686 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 |
This theorem is referenced by: ovconst2 7612 mapsncnv 8931 ofsubeq0 12260 ofsubge0 12262 ser0f 14092 hashinf 14370 iserge0 15693 iseraltlem1 15714 sum0 15753 sumz 15754 harmonic 15891 prodf1f 15924 fprodntriv 15974 prod1 15976 setcmon 18140 0mhm 18844 mulgfval 19099 mulgpropd 19146 dprdsubg 20058 pwspjmhmmgpd 20341 0lmhm 21056 frlmlmod 21786 frlmlss 21788 frlmbas 21792 frlmip 21815 islindf4 21875 mplsubglem 22036 coe1tm 22291 evls1maprnss 22397 mdetuni0 22642 txkgen 23675 xkofvcn 23707 nmo0 24771 pcorevlem 25072 rrxip 25437 mbfpos 25699 0pval 25719 0pledm 25721 xrge0f 25780 itg2ge0 25784 ibl0 25836 bddibl 25889 dvcmul 25995 dvef 26032 rolle 26042 dveq0 26053 dv11cn 26054 ftc2 26099 tdeglem4 26113 ply1rem 26219 fta1g 26223 fta1blem 26224 0dgrb 26299 dgrnznn 26300 dgrlt 26320 plymul0or 26336 plydivlem4 26352 plyrem 26361 fta1 26364 vieta1lem2 26367 elqaalem3 26377 aaliou2 26396 ulmdvlem1 26457 dchrelbas2 27295 dchrisumlem3 27549 noetasuplem4 27795 noetainflem4 27799 axlowdimlem9 28979 axlowdimlem12 28982 axlowdimlem17 28987 0oval 30816 occllem 31331 ho01i 31856 0cnfn 32008 0lnfn 32013 nmfn0 32015 nlelchi 32089 opsqrlem2 32169 opsqrlem4 32171 opsqrlem5 32172 hmopidmchi 32179 elrspunidl 33435 coe1zfv 33591 lbsdiflsp0 33653 breprexpnat 34627 circlemethnat 34634 circlevma 34635 connpconn 35219 txsconnlem 35224 cvxsconn 35227 cvmliftphtlem 35301 fullfunfv 35928 matunitlindflem1 37602 matunitlindflem2 37603 ptrecube 37606 poimirlem1 37607 poimirlem2 37608 poimirlem3 37609 poimirlem4 37610 poimirlem5 37611 poimirlem6 37612 poimirlem7 37613 poimirlem10 37616 poimirlem11 37617 poimirlem12 37618 poimirlem16 37622 poimirlem17 37623 poimirlem19 37625 poimirlem20 37626 poimirlem22 37628 poimirlem23 37629 poimirlem28 37634 poimirlem29 37635 poimirlem30 37636 poimirlem31 37637 poimirlem32 37638 poimir 37639 broucube 37640 mblfinlem2 37644 itg2addnclem 37657 itg2addnc 37660 ftc1anclem5 37683 ftc2nc 37688 cnpwstotbnd 37783 lfl0f 39050 eqlkr2 39081 lcd0vvalN 41595 frlm0vald 42525 evlsvvval 42549 selvvvval 42571 evlselv 42573 mzpsubst 42735 mzpcompact2lem 42738 mzpcong 42960 hbtlem2 43112 mncn0 43127 mpaaeu 43138 aaitgo 43150 rngunsnply 43157 cantnfresb 43313 hashnzfzclim 44317 ofsubid 44319 dvconstbi 44329 binomcxplemnotnn0 44351 n0p 44982 snelmap 45021 fvconst0ci 48688 fvconstdomi 48689 aacllem 49031 |
Copyright terms: Public domain | W3C validator |