![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvconst2 | Structured version Visualization version GIF version |
Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.) |
Ref | Expression |
---|---|
fvconst2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvconst2 | ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvconst2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | fvconst2g 6741 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
3 | 1, 2 | mpan 680 | 1 ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 Vcvv 3398 {csn 4398 × cxp 5355 ‘cfv 6137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-fv 6145 |
This theorem is referenced by: ovconst2 7093 mapsncnv 8192 ofsubeq0 11375 ofsubge0 11377 ser0f 13176 hashinf 13444 iserge0 14803 iseraltlem1 14824 sum0 14863 sumz 14864 harmonic 14999 prodf1f 15031 fprodntriv 15079 prod1 15081 setcmon 17126 0mhm 17748 mulgpropd 17972 dprdsubg 18814 0lmhm 19439 mplsubglem 19835 coe1tm 20043 frlmlmod 20496 frlmlss 20498 frlmbas 20502 frlmip 20525 islindf4 20585 mdetuni0 20836 txkgen 21868 xkofvcn 21900 nmo0 22951 pcorevlem 23237 rrxip 23600 mbfpos 23859 0pval 23879 0pledm 23881 xrge0f 23939 itg2ge0 23943 ibl0 23994 bddibl 24047 dvcmul 24148 dvef 24184 rolle 24194 dveq0 24204 dv11cn 24205 ftc2 24248 tdeglem4 24261 ply1rem 24364 fta1g 24368 fta1blem 24369 0dgrb 24443 dgrnznn 24444 dgrlt 24463 plymul0or 24477 plydivlem4 24492 plyrem 24501 fta1 24504 vieta1lem2 24507 elqaalem3 24517 aaliou2 24536 ulmdvlem1 24595 dchrelbas2 25418 dchrisumlem3 25636 axlowdimlem9 26303 axlowdimlem12 26306 axlowdimlem17 26311 0oval 28219 occllem 28738 ho01i 29263 0cnfn 29415 0lnfn 29420 nmfn0 29422 nlelchi 29496 opsqrlem2 29576 opsqrlem4 29578 opsqrlem5 29579 hmopidmchi 29586 lbsdiflsp0 30444 breprexpnat 31318 circlemethnat 31325 circlevma 31326 connpconn 31820 txsconnlem 31825 cvxsconn 31828 cvmliftphtlem 31902 noetalem3 32458 fullfunfv 32647 matunitlindflem1 34036 matunitlindflem2 34037 ptrecube 34040 poimirlem1 34041 poimirlem2 34042 poimirlem3 34043 poimirlem4 34044 poimirlem5 34045 poimirlem6 34046 poimirlem7 34047 poimirlem10 34050 poimirlem11 34051 poimirlem12 34052 poimirlem16 34056 poimirlem17 34057 poimirlem19 34059 poimirlem20 34060 poimirlem22 34062 poimirlem23 34063 poimirlem28 34068 poimirlem29 34069 poimirlem30 34070 poimirlem31 34071 poimirlem32 34072 poimir 34073 broucube 34074 mblfinlem2 34078 itg2addnclem 34091 itg2addnc 34094 ftc1anclem5 34119 ftc2nc 34124 cnpwstotbnd 34225 lfl0f 35228 eqlkr2 35259 lcd0vvalN 37772 mzpsubst 38281 mzpcompact2lem 38284 mzpcong 38508 hbtlem2 38663 mncn0 38678 mpaaeu 38689 aaitgo 38701 rngunsnply 38712 hashnzfzclim 39487 ofsubid 39489 dvconstbi 39499 binomcxplemnotnn0 39521 n0p 40151 snelmap 40195 aacllem 43663 |
Copyright terms: Public domain | W3C validator |