| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvconst2 | Structured version Visualization version GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.) |
| Ref | Expression |
|---|---|
| fvconst2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvconst2 | ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | fvconst2g 7176 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 × cxp 5636 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: ovconst2 7569 mapsncnv 8866 ofsubeq0 12183 ofsubge0 12185 ser0f 14020 hashinf 14300 iserge0 15627 iseraltlem1 15648 sum0 15687 sumz 15688 harmonic 15825 prodf1f 15858 fprodntriv 15908 prod1 15910 setcmon 18049 0mhm 18746 mulgfval 19001 mulgpropd 19048 dprdsubg 19956 pwspjmhmmgpd 20237 0lmhm 20947 frlmlmod 21658 frlmlss 21660 frlmbas 21664 frlmip 21687 islindf4 21747 mplsubglem 21908 psdmvr 22056 coe1tm 22159 evls1maprnss 22265 mdetuni0 22508 txkgen 23539 xkofvcn 23571 nmo0 24623 pcorevlem 24926 rrxip 25290 mbfpos 25552 0pval 25572 0pledm 25574 xrge0f 25632 itg2ge0 25636 ibl0 25688 bddibl 25741 dvcmul 25847 dvef 25884 rolle 25894 dveq0 25905 dv11cn 25906 ftc2 25951 tdeglem4 25965 ply1rem 26071 fta1g 26075 fta1blem 26076 0dgrb 26151 dgrnznn 26152 dgrlt 26172 plymul0or 26188 plydivlem4 26204 plyrem 26213 fta1 26216 vieta1lem2 26219 elqaalem3 26229 aaliou2 26248 ulmdvlem1 26309 dchrelbas2 27148 dchrisumlem3 27402 noetasuplem4 27648 noetainflem4 27652 axlowdimlem9 28877 axlowdimlem12 28880 axlowdimlem17 28885 0oval 30717 occllem 31232 ho01i 31757 0cnfn 31909 0lnfn 31914 nmfn0 31916 nlelchi 31990 opsqrlem2 32070 opsqrlem4 32072 opsqrlem5 32073 hmopidmchi 32080 elrspunidl 33399 coe1zfv 33556 lbsdiflsp0 33622 breprexpnat 34625 circlemethnat 34632 circlevma 34633 connpconn 35222 txsconnlem 35227 cvxsconn 35230 cvmliftphtlem 35304 fullfunfv 35935 matunitlindflem1 37610 matunitlindflem2 37611 ptrecube 37614 poimirlem1 37615 poimirlem2 37616 poimirlem3 37617 poimirlem4 37618 poimirlem5 37619 poimirlem6 37620 poimirlem7 37621 poimirlem10 37624 poimirlem11 37625 poimirlem12 37626 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 poimirlem22 37636 poimirlem23 37637 poimirlem28 37642 poimirlem29 37643 poimirlem30 37644 poimirlem31 37645 poimirlem32 37646 poimir 37647 broucube 37648 mblfinlem2 37652 itg2addnclem 37665 itg2addnc 37668 ftc1anclem5 37691 ftc2nc 37696 cnpwstotbnd 37791 lfl0f 39062 eqlkr2 39093 lcd0vvalN 41607 frlm0vald 42527 evlsvvval 42551 selvvvval 42573 evlselv 42575 mzpsubst 42736 mzpcompact2lem 42739 mzpcong 42961 hbtlem2 43113 mncn0 43128 mpaaeu 43139 aaitgo 43151 rngunsnply 43158 cantnfresb 43313 hashnzfzclim 44311 ofsubid 44313 dvconstbi 44323 binomcxplemnotnn0 44345 n0p 45039 snelmap 45076 cjnpoly 46890 sinnpoly 46892 fvconst0ci 48879 fvconstdomi 48880 islmd 49654 iscmd 49655 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |