Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvconst2 | Structured version Visualization version GIF version |
Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.) |
Ref | Expression |
---|---|
fvconst2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvconst2 | ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvconst2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | fvconst2g 7059 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
3 | 1, 2 | mpan 686 | 1 ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 × cxp 5578 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: ovconst2 7430 mapsncnv 8639 ofsubeq0 11900 ofsubge0 11902 ser0f 13704 hashinf 13977 iserge0 15300 iseraltlem1 15321 sum0 15361 sumz 15362 harmonic 15499 prodf1f 15532 fprodntriv 15580 prod1 15582 setcmon 17718 0mhm 18373 mulgfval 18617 mulgpropd 18660 dprdsubg 19542 0lmhm 20217 frlmlmod 20866 frlmlss 20868 frlmbas 20872 frlmip 20895 islindf4 20955 mplsubglem 21115 coe1tm 21354 mdetuni0 21678 txkgen 22711 xkofvcn 22743 nmo0 23805 pcorevlem 24095 rrxip 24459 mbfpos 24720 0pval 24740 0pledm 24742 xrge0f 24801 itg2ge0 24805 ibl0 24856 bddibl 24909 dvcmul 25013 dvef 25049 rolle 25059 dveq0 25069 dv11cn 25070 ftc2 25113 tdeglem4 25129 tdeglem4OLD 25130 ply1rem 25233 fta1g 25237 fta1blem 25238 0dgrb 25312 dgrnznn 25313 dgrlt 25332 plymul0or 25346 plydivlem4 25361 plyrem 25370 fta1 25373 vieta1lem2 25376 elqaalem3 25386 aaliou2 25405 ulmdvlem1 25464 dchrelbas2 26290 dchrisumlem3 26544 axlowdimlem9 27221 axlowdimlem12 27224 axlowdimlem17 27229 0oval 29051 occllem 29566 ho01i 30091 0cnfn 30243 0lnfn 30248 nmfn0 30250 nlelchi 30324 opsqrlem2 30404 opsqrlem4 30406 opsqrlem5 30407 hmopidmchi 30414 elrspunidl 31508 lbsdiflsp0 31609 breprexpnat 32514 circlemethnat 32521 circlevma 32522 connpconn 33097 txsconnlem 33102 cvxsconn 33105 cvmliftphtlem 33179 noetasuplem4 33866 noetainflem4 33870 fullfunfv 34176 matunitlindflem1 35700 matunitlindflem2 35701 ptrecube 35704 poimirlem1 35705 poimirlem2 35706 poimirlem3 35707 poimirlem4 35708 poimirlem5 35709 poimirlem6 35710 poimirlem7 35711 poimirlem10 35714 poimirlem11 35715 poimirlem12 35716 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 poimirlem22 35726 poimirlem23 35727 poimirlem28 35732 poimirlem29 35733 poimirlem30 35734 poimirlem31 35735 poimirlem32 35736 poimir 35737 broucube 35738 mblfinlem2 35742 itg2addnclem 35755 itg2addnc 35758 ftc1anclem5 35781 ftc2nc 35786 cnpwstotbnd 35882 lfl0f 37010 eqlkr2 37041 lcd0vvalN 39554 frlm0vald 40187 pwspjmhmmgpd 40192 mhphf 40208 mzpsubst 40486 mzpcompact2lem 40489 mzpcong 40710 hbtlem2 40865 mncn0 40880 mpaaeu 40891 aaitgo 40903 rngunsnply 40914 hashnzfzclim 41829 ofsubid 41831 dvconstbi 41841 binomcxplemnotnn0 41863 n0p 42480 snelmap 42521 fvconst0ci 46074 fvconstdomi 46075 aacllem 46391 |
Copyright terms: Public domain | W3C validator |