| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvconst2 | Structured version Visualization version GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.) |
| Ref | Expression |
|---|---|
| fvconst2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvconst2 | ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst2.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | fvconst2g 7142 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 × cxp 5617 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: ovconst2 7532 mapsncnv 8823 ofsubeq0 12129 ofsubge0 12131 ser0f 13964 hashinf 14244 iserge0 15570 iseraltlem1 15591 sum0 15630 sumz 15631 harmonic 15768 prodf1f 15801 fprodntriv 15851 prod1 15853 setcmon 17996 0mhm 18729 mulgfval 18984 mulgpropd 19031 dprdsubg 19940 pwspjmhmmgpd 20248 0lmhm 20976 frlmlmod 21688 frlmlss 21690 frlmbas 21694 frlmip 21717 islindf4 21777 mplsubglem 21937 psdmvr 22085 coe1tm 22188 evls1maprnss 22294 mdetuni0 22537 txkgen 23568 xkofvcn 23600 nmo0 24651 pcorevlem 24954 rrxip 25318 mbfpos 25580 0pval 25600 0pledm 25602 xrge0f 25660 itg2ge0 25664 ibl0 25716 bddibl 25769 dvcmul 25875 dvef 25912 rolle 25922 dveq0 25933 dv11cn 25934 ftc2 25979 tdeglem4 25993 ply1rem 26099 fta1g 26103 fta1blem 26104 0dgrb 26179 dgrnznn 26180 dgrlt 26200 plymul0or 26216 plydivlem4 26232 plyrem 26241 fta1 26244 vieta1lem2 26247 elqaalem3 26257 aaliou2 26276 ulmdvlem1 26337 dchrelbas2 27176 dchrisumlem3 27430 noetasuplem4 27676 noetainflem4 27680 axlowdimlem9 28930 axlowdimlem12 28933 axlowdimlem17 28938 0oval 30770 occllem 31285 ho01i 31810 0cnfn 31962 0lnfn 31967 nmfn0 31969 nlelchi 32043 opsqrlem2 32123 opsqrlem4 32125 opsqrlem5 32126 hmopidmchi 32133 elrspunidl 33400 coe1zfv 33558 mplvrpmmhm 33594 lbsdiflsp0 33660 breprexpnat 34668 circlemethnat 34675 circlevma 34676 connpconn 35300 txsconnlem 35305 cvxsconn 35308 cvmliftphtlem 35382 fullfunfv 36012 matunitlindflem1 37676 matunitlindflem2 37677 ptrecube 37680 poimirlem1 37681 poimirlem2 37682 poimirlem3 37683 poimirlem4 37684 poimirlem5 37685 poimirlem6 37686 poimirlem7 37687 poimirlem10 37690 poimirlem11 37691 poimirlem12 37692 poimirlem16 37696 poimirlem17 37697 poimirlem19 37699 poimirlem20 37700 poimirlem22 37702 poimirlem23 37703 poimirlem28 37708 poimirlem29 37709 poimirlem30 37710 poimirlem31 37711 poimirlem32 37712 poimir 37713 broucube 37714 mblfinlem2 37718 itg2addnclem 37731 itg2addnc 37734 ftc1anclem5 37757 ftc2nc 37762 cnpwstotbnd 37857 lfl0f 39188 eqlkr2 39219 lcd0vvalN 41732 frlm0vald 42657 evlsvvval 42681 selvvvval 42703 evlselv 42705 mzpsubst 42865 mzpcompact2lem 42868 mzpcong 43089 hbtlem2 43241 mncn0 43256 mpaaeu 43267 aaitgo 43279 rngunsnply 43286 cantnfresb 43441 hashnzfzclim 44439 ofsubid 44441 dvconstbi 44451 binomcxplemnotnn0 44473 n0p 45166 snelmap 45203 nthrucw 47008 cjnpoly 47013 sinnpoly 47015 fvconst0ci 49015 fvconstdomi 49016 islmd 49790 iscmd 49791 aacllem 49926 |
| Copyright terms: Public domain | W3C validator |