MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpodv Structured version   Visualization version   GIF version

Theorem ovmpodv 7575
Description: Alternate deduction version of ovmpo 7578, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpodf.1 (𝜑𝐴𝐶)
ovmpodf.2 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
ovmpodf.3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
ovmpodf.4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))
Assertion
Ref Expression
ovmpodv (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpodv
StepHypRef Expression
1 ovmpodf.1 . 2 (𝜑𝐴𝐶)
2 ovmpodf.2 . 2 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
3 ovmpodf.3 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
4 ovmpodf.4 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))
5 nfcv 2892 . 2 𝑥𝐹
6 nfv 1910 . 2 𝑥𝜓
7 nfcv 2892 . 2 𝑦𝐹
8 nfv 1910 . 2 𝑦𝜓
91, 2, 3, 4, 5, 6, 7, 8ovmpodf 7574 1 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  (class class class)co 7416  cmpo 7418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-iota 6498  df-fun 6548  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421
This theorem is referenced by:  xpcco  18202  curf12  18247  curf2  18249
  Copyright terms: Public domain W3C validator