MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpodv Structured version   Visualization version   GIF version

Theorem ovmpodv 7280
Description: Alternate deduction version of ovmpo 7283, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpodf.1 (𝜑𝐴𝐶)
ovmpodf.2 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
ovmpodf.3 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
ovmpodf.4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))
Assertion
Ref Expression
ovmpodv (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpodv
StepHypRef Expression
1 ovmpodf.1 . 2 (𝜑𝐴𝐶)
2 ovmpodf.2 . 2 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
3 ovmpodf.3 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)
4 ovmpodf.4 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))
5 nfcv 2973 . 2 𝑥𝐹
6 nfv 1915 . 2 𝑥𝜓
7 nfcv 2973 . 2 𝑦𝐹
8 nfv 1915 . 2 𝑦𝜓
91, 2, 3, 4, 5, 6, 7, 8ovmpodf 7279 1 (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  (class class class)co 7129  cmpo 7131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5175  ax-nul 5182  ax-pr 5302
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3472  df-sbc 3749  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4811  df-br 5039  df-opab 5101  df-id 5432  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-iota 6286  df-fun 6329  df-fv 6335  df-ov 7132  df-oprab 7133  df-mpo 7134
This theorem is referenced by:  xpcco  17408  curf12  17452  curf2  17454
  Copyright terms: Public domain W3C validator