![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpodv | Structured version Visualization version GIF version |
Description: Alternate deduction version of ovmpo 7578, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
Ref | Expression |
---|---|
ovmpodf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
ovmpodf.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) |
ovmpodf.3 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) |
ovmpodf.4 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅 → 𝜓)) |
Ref | Expression |
---|---|
ovmpodv | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpodf.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | ovmpodf.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) | |
3 | ovmpodf.3 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) | |
4 | ovmpodf.4 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅 → 𝜓)) | |
5 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝐹 | |
6 | nfv 1910 | . 2 ⊢ Ⅎ𝑥𝜓 | |
7 | nfcv 2892 | . 2 ⊢ Ⅎ𝑦𝐹 | |
8 | nfv 1910 | . 2 ⊢ Ⅎ𝑦𝜓 | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ovmpodf 7574 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 (class class class)co 7416 ∈ cmpo 7418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6498 df-fun 6548 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 |
This theorem is referenced by: xpcco 18202 curf12 18247 curf2 18249 |
Copyright terms: Public domain | W3C validator |