MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcco Structured version   Visualization version   GIF version

Theorem xpcco 17816
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpccofval.t 𝑇 = (𝐶 ×c 𝐷)
xpccofval.b 𝐵 = (Base‘𝑇)
xpccofval.k 𝐾 = (Hom ‘𝑇)
xpccofval.o1 · = (comp‘𝐶)
xpccofval.o2 = (comp‘𝐷)
xpccofval.o 𝑂 = (comp‘𝑇)
xpcco.x (𝜑𝑋𝐵)
xpcco.y (𝜑𝑌𝐵)
xpcco.z (𝜑𝑍𝐵)
xpcco.f (𝜑𝐹 ∈ (𝑋𝐾𝑌))
xpcco.g (𝜑𝐺 ∈ (𝑌𝐾𝑍))
Assertion
Ref Expression
xpcco (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩)

Proof of Theorem xpcco
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpccofval.t . . 3 𝑇 = (𝐶 ×c 𝐷)
2 xpccofval.b . . 3 𝐵 = (Base‘𝑇)
3 xpccofval.k . . 3 𝐾 = (Hom ‘𝑇)
4 xpccofval.o1 . . 3 · = (comp‘𝐶)
5 xpccofval.o2 . . 3 = (comp‘𝐷)
6 xpccofval.o . . 3 𝑂 = (comp‘𝑇)
71, 2, 3, 4, 5, 6xpccofval 17815 . 2 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩))
8 xpcco.x . . . 4 (𝜑𝑋𝐵)
9 xpcco.y . . . 4 (𝜑𝑌𝐵)
108, 9opelxpd 5618 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
11 xpcco.z . . . 4 (𝜑𝑍𝐵)
1211adantr 480 . . 3 ((𝜑𝑥 = ⟨𝑋, 𝑌⟩) → 𝑍𝐵)
13 ovex 7288 . . . . 5 ((2nd𝑥)𝐾𝑦) ∈ V
14 fvex 6769 . . . . 5 (𝐾𝑥) ∈ V
1513, 14mpoex 7893 . . . 4 (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩) ∈ V
1615a1i 11 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩) ∈ V)
17 xpcco.g . . . . . 6 (𝜑𝐺 ∈ (𝑌𝐾𝑍))
1817adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝐺 ∈ (𝑌𝐾𝑍))
19 simprl 767 . . . . . . . 8 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝑥 = ⟨𝑋, 𝑌⟩)
2019fveq2d 6760 . . . . . . 7 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (2nd𝑥) = (2nd ‘⟨𝑋, 𝑌⟩))
21 op2ndg 7817 . . . . . . . . 9 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
228, 9, 21syl2anc 583 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2322adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2420, 23eqtrd 2778 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (2nd𝑥) = 𝑌)
25 simprr 769 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝑦 = 𝑍)
2624, 25oveq12d 7273 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → ((2nd𝑥)𝐾𝑦) = (𝑌𝐾𝑍))
2718, 26eleqtrrd 2842 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝐺 ∈ ((2nd𝑥)𝐾𝑦))
28 xpcco.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐾𝑌))
2928adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝐹 ∈ (𝑋𝐾𝑌))
3019fveq2d 6760 . . . . . . 7 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (𝐾𝑥) = (𝐾‘⟨𝑋, 𝑌⟩))
31 df-ov 7258 . . . . . . 7 (𝑋𝐾𝑌) = (𝐾‘⟨𝑋, 𝑌⟩)
3230, 31eqtr4di 2797 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (𝐾𝑥) = (𝑋𝐾𝑌))
3329, 32eleqtrrd 2842 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝐹 ∈ (𝐾𝑥))
3433adantr 480 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ 𝑔 = 𝐺) → 𝐹 ∈ (𝐾𝑥))
35 opex 5373 . . . . 5 ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩ ∈ V
3635a1i 11 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩ ∈ V)
3719fveq2d 6760 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (1st𝑥) = (1st ‘⟨𝑋, 𝑌⟩))
38 op1stg 7816 . . . . . . . . . . . . 13 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
398, 9, 38syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
4039adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
4137, 40eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (1st𝑥) = 𝑋)
4241adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑥) = 𝑋)
4342fveq2d 6760 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st ‘(1st𝑥)) = (1st𝑋))
4424adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑥) = 𝑌)
4544fveq2d 6760 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st ‘(2nd𝑥)) = (1st𝑌))
4643, 45opeq12d 4809 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ = ⟨(1st𝑋), (1st𝑌)⟩)
47 simplrr 774 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑦 = 𝑍)
4847fveq2d 6760 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑦) = (1st𝑍))
4946, 48oveq12d 7273 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦)) = (⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍)))
50 simprl 767 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
5150fveq2d 6760 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑔) = (1st𝐺))
52 simprr 769 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
5352fveq2d 6760 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑓) = (1st𝐹))
5449, 51, 53oveq123d 7276 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)) = ((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)))
5542fveq2d 6760 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd ‘(1st𝑥)) = (2nd𝑋))
5644fveq2d 6760 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd ‘(2nd𝑥)) = (2nd𝑌))
5755, 56opeq12d 4809 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ = ⟨(2nd𝑋), (2nd𝑌)⟩)
5847fveq2d 6760 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑦) = (2nd𝑍))
5957, 58oveq12d 7273 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦)) = (⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍)))
6050fveq2d 6760 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑔) = (2nd𝐺))
6152fveq2d 6760 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑓) = (2nd𝐹))
6259, 60, 61oveq123d 7276 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓)) = ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹)))
6354, 62opeq12d 4809 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩ = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩)
6427, 34, 36, 63ovmpodv2 7409 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → ((⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩) → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩))
6510, 12, 16, 64ovmpodv 7408 . 2 (𝜑 → (𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩)) → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩))
667, 65mpi 20 1 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   × cxp 5578  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  Basecbs 16840  Hom chom 16899  compcco 16900   ×c cxpc 17801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-xpc 17805
This theorem is referenced by:  xpcco1st  17817  xpcco2nd  17818  xpcco2  17820  xpccatid  17821
  Copyright terms: Public domain W3C validator