MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcco Structured version   Visualization version   GIF version

Theorem xpcco 17432
Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpccofval.t 𝑇 = (𝐶 ×c 𝐷)
xpccofval.b 𝐵 = (Base‘𝑇)
xpccofval.k 𝐾 = (Hom ‘𝑇)
xpccofval.o1 · = (comp‘𝐶)
xpccofval.o2 = (comp‘𝐷)
xpccofval.o 𝑂 = (comp‘𝑇)
xpcco.x (𝜑𝑋𝐵)
xpcco.y (𝜑𝑌𝐵)
xpcco.z (𝜑𝑍𝐵)
xpcco.f (𝜑𝐹 ∈ (𝑋𝐾𝑌))
xpcco.g (𝜑𝐺 ∈ (𝑌𝐾𝑍))
Assertion
Ref Expression
xpcco (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩)

Proof of Theorem xpcco
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpccofval.t . . 3 𝑇 = (𝐶 ×c 𝐷)
2 xpccofval.b . . 3 𝐵 = (Base‘𝑇)
3 xpccofval.k . . 3 𝐾 = (Hom ‘𝑇)
4 xpccofval.o1 . . 3 · = (comp‘𝐶)
5 xpccofval.o2 . . 3 = (comp‘𝐷)
6 xpccofval.o . . 3 𝑂 = (comp‘𝑇)
71, 2, 3, 4, 5, 6xpccofval 17431 . 2 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩))
8 xpcco.x . . . 4 (𝜑𝑋𝐵)
9 xpcco.y . . . 4 (𝜑𝑌𝐵)
108, 9opelxpd 5592 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
11 xpcco.z . . . 4 (𝜑𝑍𝐵)
1211adantr 483 . . 3 ((𝜑𝑥 = ⟨𝑋, 𝑌⟩) → 𝑍𝐵)
13 ovex 7188 . . . . 5 ((2nd𝑥)𝐾𝑦) ∈ V
14 fvex 6682 . . . . 5 (𝐾𝑥) ∈ V
1513, 14mpoex 7776 . . . 4 (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩) ∈ V
1615a1i 11 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩) ∈ V)
17 xpcco.g . . . . . 6 (𝜑𝐺 ∈ (𝑌𝐾𝑍))
1817adantr 483 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝐺 ∈ (𝑌𝐾𝑍))
19 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝑥 = ⟨𝑋, 𝑌⟩)
2019fveq2d 6673 . . . . . . 7 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (2nd𝑥) = (2nd ‘⟨𝑋, 𝑌⟩))
21 op2ndg 7701 . . . . . . . . 9 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
228, 9, 21syl2anc 586 . . . . . . . 8 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2322adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2420, 23eqtrd 2856 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (2nd𝑥) = 𝑌)
25 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝑦 = 𝑍)
2624, 25oveq12d 7173 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → ((2nd𝑥)𝐾𝑦) = (𝑌𝐾𝑍))
2718, 26eleqtrrd 2916 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝐺 ∈ ((2nd𝑥)𝐾𝑦))
28 xpcco.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐾𝑌))
2928adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝐹 ∈ (𝑋𝐾𝑌))
3019fveq2d 6673 . . . . . . 7 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (𝐾𝑥) = (𝐾‘⟨𝑋, 𝑌⟩))
31 df-ov 7158 . . . . . . 7 (𝑋𝐾𝑌) = (𝐾‘⟨𝑋, 𝑌⟩)
3230, 31syl6eqr 2874 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (𝐾𝑥) = (𝑋𝐾𝑌))
3329, 32eleqtrrd 2916 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → 𝐹 ∈ (𝐾𝑥))
3433adantr 483 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ 𝑔 = 𝐺) → 𝐹 ∈ (𝐾𝑥))
35 opex 5355 . . . . 5 ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩ ∈ V
3635a1i 11 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩ ∈ V)
3719fveq2d 6673 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (1st𝑥) = (1st ‘⟨𝑋, 𝑌⟩))
38 op1stg 7700 . . . . . . . . . . . . 13 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
398, 9, 38syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
4039adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
4137, 40eqtrd 2856 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → (1st𝑥) = 𝑋)
4241adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑥) = 𝑋)
4342fveq2d 6673 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st ‘(1st𝑥)) = (1st𝑋))
4424adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑥) = 𝑌)
4544fveq2d 6673 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st ‘(2nd𝑥)) = (1st𝑌))
4643, 45opeq12d 4810 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ = ⟨(1st𝑋), (1st𝑌)⟩)
47 simplrr 776 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑦 = 𝑍)
4847fveq2d 6673 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑦) = (1st𝑍))
4946, 48oveq12d 7173 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦)) = (⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍)))
50 simprl 769 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
5150fveq2d 6673 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑔) = (1st𝐺))
52 simprr 771 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
5352fveq2d 6673 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑓) = (1st𝐹))
5449, 51, 53oveq123d 7176 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)) = ((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)))
5542fveq2d 6673 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd ‘(1st𝑥)) = (2nd𝑋))
5644fveq2d 6673 . . . . . . . 8 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd ‘(2nd𝑥)) = (2nd𝑌))
5755, 56opeq12d 4810 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ = ⟨(2nd𝑋), (2nd𝑌)⟩)
5847fveq2d 6673 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑦) = (2nd𝑍))
5957, 58oveq12d 7173 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦)) = (⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍)))
6050fveq2d 6673 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑔) = (2nd𝐺))
6152fveq2d 6673 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑓) = (2nd𝐹))
6259, 60, 61oveq123d 7176 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓)) = ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹)))
6354, 62opeq12d 4810 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩ = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩)
6427, 34, 36, 63ovmpodv2 7307 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝑋, 𝑌⟩ ∧ 𝑦 = 𝑍)) → ((⟨𝑋, 𝑌𝑂𝑍) = (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩) → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩))
6510, 12, 16, 64ovmpodv 7306 . 2 (𝜑 → (𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐾𝑦), 𝑓 ∈ (𝐾𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩ · (1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩ (2nd𝑦))(2nd𝑓))⟩)) → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩))
667, 65mpi 20 1 (𝜑 → (𝐺(⟨𝑋, 𝑌𝑂𝑍)𝐹) = ⟨((1st𝐺)(⟨(1st𝑋), (1st𝑌)⟩ · (1st𝑍))(1st𝐹)), ((2nd𝐺)(⟨(2nd𝑋), (2nd𝑌)⟩ (2nd𝑍))(2nd𝐹))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  cop 4572   × cxp 5552  cfv 6354  (class class class)co 7155  cmpo 7157  1st c1st 7686  2nd c2nd 7687  Basecbs 16482  Hom chom 16575  compcco 16576   ×c cxpc 17417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-hom 16588  df-cco 16589  df-xpc 17421
This theorem is referenced by:  xpcco1st  17433  xpcco2nd  17434  xpcco2  17436  xpccatid  17437
  Copyright terms: Public domain W3C validator