Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovmpt4d Structured version   Visualization version   GIF version

Theorem ovmpt4d 48721
Description: Deduction version of ovmpt4g 7548. (This is the operation analogue of fvmpt2d 6995.) (Contributed by Zhi Wang, 9-Oct-2025.)
Hypotheses
Ref Expression
ovmpt4d.1 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
ovmpt4d.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑉)
Assertion
Ref Expression
ovmpt4d ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = 𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpt4d
StepHypRef Expression
1 ovmpt4d.1 . . 3 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
21oveqdr 7427 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥(𝑥𝐴, 𝑦𝐵𝐶)𝑦))
3 simprl 770 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥𝐴)
4 simprr 772 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑦𝐵)
5 ovmpt4d.2 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑉)
6 eqid 2734 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
76ovmpt4g 7548 . . 3 ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥(𝑥𝐴, 𝑦𝐵𝐶)𝑦) = 𝐶)
83, 4, 5, 7syl3anc 1372 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥(𝑥𝐴, 𝑦𝐵𝐶)𝑦) = 𝐶)
92, 8eqtrd 2769 1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  (class class class)co 7399  cmpo 7401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-iota 6480  df-fun 6529  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404
This theorem is referenced by:  iinfssc  48902  tposcurf1  49016  idfudiag1  49195
  Copyright terms: Public domain W3C validator