Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovmpt4d Structured version   Visualization version   GIF version

Theorem ovmpt4d 48826
Description: Deduction version of ovmpt4g 7516. (This is the operation analogue of fvmpt2d 6963.) (Contributed by Zhi Wang, 9-Oct-2025.)
Hypotheses
Ref Expression
ovmpt4d.1 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
ovmpt4d.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑉)
Assertion
Ref Expression
ovmpt4d ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = 𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpt4d
StepHypRef Expression
1 ovmpt4d.1 . . 3 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
21oveqdr 7397 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥(𝑥𝐴, 𝑦𝐵𝐶)𝑦))
3 simprl 770 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥𝐴)
4 simprr 772 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑦𝐵)
5 ovmpt4d.2 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑉)
6 eqid 2729 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
76ovmpt4g 7516 . . 3 ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥(𝑥𝐴, 𝑦𝐵𝐶)𝑦) = 𝐶)
83, 4, 5, 7syl3anc 1373 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥(𝑥𝐴, 𝑦𝐵𝐶)𝑦) = 𝐶)
92, 8eqtrd 2764 1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7369  cmpo 7371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374
This theorem is referenced by:  iinfssc  49019  tposcurf1  49261  idfudiag1  49487
  Copyright terms: Public domain W3C validator