| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovmpt4d | Structured version Visualization version GIF version | ||
| Description: Deduction version of ovmpt4g 7577. (This is the operation analogue of fvmpt2d 7027.) (Contributed by Zhi Wang, 9-Oct-2025.) |
| Ref | Expression |
|---|---|
| ovmpt4d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
| ovmpt4d.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ovmpt4d | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpt4d.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) | |
| 2 | 1 | oveqdr 7457 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = (𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑦)) |
| 3 | simprl 771 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐴) | |
| 4 | simprr 773 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
| 5 | ovmpt4d.2 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑉) | |
| 6 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 7 | 6 | ovmpt4g 7577 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑦) = 𝐶) |
| 8 | 3, 4, 5, 7 | syl3anc 1373 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)𝑦) = 𝐶) |
| 9 | 2, 8 | eqtrd 2776 | 1 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 (class class class)co 7429 ∈ cmpo 7431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-iota 6512 df-fun 6561 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 |
| This theorem is referenced by: tposcurf1 48972 |
| Copyright terms: Public domain | W3C validator |