Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovmpt4d Structured version   Visualization version   GIF version

Theorem ovmpt4d 48741
Description: Deduction version of ovmpt4g 7577. (This is the operation analogue of fvmpt2d 7027.) (Contributed by Zhi Wang, 9-Oct-2025.)
Hypotheses
Ref Expression
ovmpt4d.1 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
ovmpt4d.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑉)
Assertion
Ref Expression
ovmpt4d ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = 𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpt4d
StepHypRef Expression
1 ovmpt4d.1 . . 3 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
21oveqdr 7457 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥(𝑥𝐴, 𝑦𝐵𝐶)𝑦))
3 simprl 771 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥𝐴)
4 simprr 773 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑦𝐵)
5 ovmpt4d.2 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑉)
6 eqid 2736 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
76ovmpt4g 7577 . . 3 ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥(𝑥𝐴, 𝑦𝐵𝐶)𝑦) = 𝐶)
83, 4, 5, 7syl3anc 1373 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥(𝑥𝐴, 𝑦𝐵𝐶)𝑦) = 𝐶)
92, 8eqtrd 2776 1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  (class class class)co 7429  cmpo 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-iota 6512  df-fun 6561  df-fv 6567  df-ov 7432  df-oprab 7433  df-mpo 7434
This theorem is referenced by:  tposcurf1  48972
  Copyright terms: Public domain W3C validator