Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovmpt4d Structured version   Visualization version   GIF version

Theorem ovmpt4d 49026
Description: Deduction version of ovmpt4g 7502. (This is the operation analogue of fvmpt2d 6951.) (Contributed by Zhi Wang, 9-Oct-2025.)
Hypotheses
Ref Expression
ovmpt4d.1 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
ovmpt4d.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑉)
Assertion
Ref Expression
ovmpt4d ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = 𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpt4d
StepHypRef Expression
1 ovmpt4d.1 . . 3 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
21oveqdr 7383 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥(𝑥𝐴, 𝑦𝐵𝐶)𝑦))
3 simprl 770 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑥𝐴)
4 simprr 772 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑦𝐵)
5 ovmpt4d.2 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑉)
6 eqid 2733 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
76ovmpt4g 7502 . . 3 ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥(𝑥𝐴, 𝑦𝐵𝐶)𝑦) = 𝐶)
83, 4, 5, 7syl3anc 1373 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥(𝑥𝐴, 𝑦𝐵𝐶)𝑦) = 𝐶)
92, 8eqtrd 2768 1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  (class class class)co 7355  cmpo 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360
This theorem is referenced by:  iinfssc  49218  tposcurf1  49460  idfudiag1  49686
  Copyright terms: Public domain W3C validator