Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqfnovd Structured version   Visualization version   GIF version

Theorem eqfnovd 48827
Description: Deduction for equality of operations. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
eqfnovd.1 (𝜑𝐹 Fn (𝐴 × 𝐵))
eqfnovd.2 (𝜑𝐺 Fn (𝐴 × 𝐵))
eqfnovd.3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
Assertion
Ref Expression
eqfnovd (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦

Proof of Theorem eqfnovd
StepHypRef Expression
1 eqfnovd.3 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
21ralrimivva 3178 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
3 eqfnovd.1 . . 3 (𝜑𝐹 Fn (𝐴 × 𝐵))
4 eqfnovd.2 . . 3 (𝜑𝐺 Fn (𝐴 × 𝐵))
5 eqfnov2 7499 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐴 × 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
63, 4, 5syl2anc 584 . 2 (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
72, 6mpbird 257 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   × cxp 5629   Fn wfn 6494  (class class class)co 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-ov 7372
This theorem is referenced by:  prcofdiag1  49355  prcofdiag  49356  oppfdiag1  49376  oppfdiag  49378
  Copyright terms: Public domain W3C validator