Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposcurf1 Structured version   Visualization version   GIF version

Theorem tposcurf1 49261
Description: Value of the object part of the transposed curry functor. (Contributed by Zhi Wang, 9-Oct-2025.)
Hypotheses
Ref Expression
tposcurf1.g (𝜑𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶 swapF 𝐷))))
tposcurf1.a 𝐴 = (Base‘𝐶)
tposcurf1.c (𝜑𝐶 ∈ Cat)
tposcurf1.d (𝜑𝐷 ∈ Cat)
tposcurf1.f (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))
tposcurf1.x (𝜑𝑋𝐴)
tposcurf1.k (𝜑𝐾 = ((1st𝐺)‘𝑋))
tposcurf1.b 𝐵 = (Base‘𝐷)
tposcurf1.j 𝐽 = (Hom ‘𝐷)
tposcurf1.1 1 = (Id‘𝐶)
Assertion
Ref Expression
tposcurf1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑦(1st𝐹)𝑋)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋))))⟩)
Distinct variable groups:   1 ,𝑔,𝑦,𝑧   𝑦,𝐴   𝐵,𝑔,𝑦,𝑧   𝐶,𝑔,𝑦,𝑧   𝐷,𝑔,𝑦,𝑧   𝑔,𝐸,𝑦,𝑧   𝑔,𝐹,𝑦,𝑧   𝑔,𝐽   𝑔,𝑋,𝑦,𝑧   𝜑,𝑔,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐽(𝑦,𝑧)   𝐾(𝑦,𝑧,𝑔)

Proof of Theorem tposcurf1
StepHypRef Expression
1 tposcurf1.k . . 3 (𝜑𝐾 = ((1st𝐺)‘𝑋))
2 tposcurf1.g . . . . 5 (𝜑𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶 swapF 𝐷))))
32fveq2d 6844 . . . 4 (𝜑 → (1st𝐺) = (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶 swapF 𝐷)))))
43fveq1d 6842 . . 3 (𝜑 → ((1st𝐺)‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶 swapF 𝐷))))‘𝑋))
5 eqid 2729 . . . 4 (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶 swapF 𝐷))) = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶 swapF 𝐷)))
6 tposcurf1.a . . . 4 𝐴 = (Base‘𝐶)
7 tposcurf1.c . . . 4 (𝜑𝐶 ∈ Cat)
8 tposcurf1.d . . . 4 (𝜑𝐷 ∈ Cat)
9 tposcurf1.f . . . . 5 (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))
10 eqidd 2730 . . . . 5 (𝜑 → (𝐹func (𝐶 swapF 𝐷)) = (𝐹func (𝐶 swapF 𝐷)))
117, 8, 9, 10cofuswapfcl 49255 . . . 4 (𝜑 → (𝐹func (𝐶 swapF 𝐷)) ∈ ((𝐶 ×c 𝐷) Func 𝐸))
12 tposcurf1.b . . . 4 𝐵 = (Base‘𝐷)
13 tposcurf1.x . . . 4 (𝜑𝑋𝐴)
14 eqid 2729 . . . 4 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶 swapF 𝐷))))‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶 swapF 𝐷))))‘𝑋)
15 tposcurf1.j . . . 4 𝐽 = (Hom ‘𝐷)
16 tposcurf1.1 . . . 4 1 = (Id‘𝐶)
175, 6, 7, 8, 11, 12, 13, 14, 15, 16curf1 18162 . . 3 (𝜑 → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶 swapF 𝐷))))‘𝑋) = ⟨(𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶 swapF 𝐷)))𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔)))⟩)
181, 4, 173eqtrd 2768 . 2 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶 swapF 𝐷)))𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔)))⟩)
1912fvexi 6854 . . . . . . . . 9 𝐵 ∈ V
2019mptex 7179 . . . . . . . 8 (𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶 swapF 𝐷)))𝑦)) ∈ V
2119, 19mpoex 8037 . . . . . . . 8 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔))) ∈ V
2220, 21op1std 7957 . . . . . . 7 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶 swapF 𝐷)))𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔)))⟩ → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶 swapF 𝐷)))𝑦)))
2318, 22syl 17 . . . . . 6 (𝜑 → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶 swapF 𝐷)))𝑦)))
24 ovexd 7404 . . . . . 6 ((𝜑𝑦𝐵) → (𝑋(1st ‘(𝐹func (𝐶 swapF 𝐷)))𝑦) ∈ V)
2523, 24fvmpt2d 6963 . . . . 5 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = (𝑋(1st ‘(𝐹func (𝐶 swapF 𝐷)))𝑦))
262adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶 swapF 𝐷))))
277adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐶 ∈ Cat)
288adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐷 ∈ Cat)
299adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))
3013adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝑋𝐴)
311adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐾 = ((1st𝐺)‘𝑋))
32 simpr 484 . . . . . 6 ((𝜑𝑦𝐵) → 𝑦𝐵)
3326, 6, 27, 28, 29, 30, 31, 12, 32tposcurf11 49259 . . . . 5 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = (𝑦(1st𝐹)𝑋))
3425, 33eqtr3d 2766 . . . 4 ((𝜑𝑦𝐵) → (𝑋(1st ‘(𝐹func (𝐶 swapF 𝐷)))𝑦) = (𝑦(1st𝐹)𝑋))
3534mpteq2dva 5195 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶 swapF 𝐷)))𝑦)) = (𝑦𝐵 ↦ (𝑦(1st𝐹)𝑋)))
3620, 21op2ndd 7958 . . . . . . . . . 10 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶 swapF 𝐷)))𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔)))⟩ → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔))))
3718, 36syl 17 . . . . . . . . 9 (𝜑 → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔))))
38 ovex 7402 . . . . . . . . . . 11 (𝑦𝐽𝑧) ∈ V
3938mptex 7179 . . . . . . . . . 10 (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔)) ∈ V
4039a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔)) ∈ V)
4137, 40ovmpt4d 48826 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(2nd𝐾)𝑧) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔)))
42 ovexd 7404 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔) ∈ V)
4341, 42fvmpt2d 6963 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔))
442ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶 swapF 𝐷))))
457ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐶 ∈ Cat)
468ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐷 ∈ Cat)
479ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))
4813ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑋𝐴)
491ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐾 = ((1st𝐺)‘𝑋))
50 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑦𝐵)
51 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑧𝐵)
52 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑔 ∈ (𝑦𝐽𝑧))
5344, 6, 45, 46, 47, 48, 49, 12, 50, 15, 16, 51, 52tposcurf12 49260 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋)))
5443, 53eqtr3d 2766 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔) = (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋)))
5554mpteq2dva 5195 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋))))
56553impb 1114 . . . 4 ((𝜑𝑦𝐵𝑧𝐵) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋))))
5756mpoeq3dva 7446 . . 3 (𝜑 → (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋)))))
5835, 57opeq12d 4841 . 2 (𝜑 → ⟨(𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶 swapF 𝐷)))𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶 swapF 𝐷)))⟨𝑋, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦𝐵 ↦ (𝑦(1st𝐹)𝑋)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋))))⟩)
5918, 58eqtrd 2764 1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑦(1st𝐹)𝑋)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cop 4591  cmpt 5183  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  Catccat 17601  Idccid 17602   Func cfunc 17792  func ccofu 17794   ×c cxpc 18105   curryF ccurf 18147   swapF cswapf 49221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-func 17796  df-cofu 17798  df-xpc 18109  df-curf 18151  df-swapf 49222
This theorem is referenced by:  precofval  49329  precofvalALT  49330
  Copyright terms: Public domain W3C validator