Proof of Theorem tposcurf1
Step | Hyp | Ref
| Expression |
1 | | tposcurf1.k |
. . 3
⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) |
2 | | tposcurf1.g |
. . . . 5
⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func
(𝐶swapF𝐷)))) |
3 | 2 | fveq2d 6908 |
. . . 4
⊢ (𝜑 → (1st
‘𝐺) = (1st
‘(〈𝐶, 𝐷〉 curryF
(𝐹
∘func (𝐶swapF𝐷))))) |
4 | 3 | fveq1d 6906 |
. . 3
⊢ (𝜑 → ((1st
‘𝐺)‘𝑋) = ((1st
‘(〈𝐶, 𝐷〉 curryF
(𝐹
∘func (𝐶swapF𝐷))))‘𝑋)) |
5 | | eqid 2736 |
. . . 4
⊢
(〈𝐶, 𝐷〉 curryF
(𝐹
∘func (𝐶swapF𝐷))) = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func
(𝐶swapF𝐷))) |
6 | | tposcurf1.a |
. . . 4
⊢ 𝐴 = (Base‘𝐶) |
7 | | tposcurf1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | | tposcurf1.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
9 | | tposcurf1.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) |
10 | | eqidd 2737 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘func (𝐶swapF𝐷)) = (𝐹 ∘func (𝐶swapF𝐷))) |
11 | 7, 8, 9, 10 | cofuswapfcl 48966 |
. . . 4
⊢ (𝜑 → (𝐹 ∘func (𝐶swapF𝐷)) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
12 | | tposcurf1.b |
. . . 4
⊢ 𝐵 = (Base‘𝐷) |
13 | | tposcurf1.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
14 | | eqid 2736 |
. . . 4
⊢
((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func
(𝐶swapF𝐷))))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func
(𝐶swapF𝐷))))‘𝑋) |
15 | | tposcurf1.j |
. . . 4
⊢ 𝐽 = (Hom ‘𝐷) |
16 | | tposcurf1.1 |
. . . 4
⊢ 1 =
(Id‘𝐶) |
17 | 5, 6, 7, 8, 11, 12, 13, 14, 15, 16 | curf1 18266 |
. . 3
⊢ (𝜑 → ((1st
‘(〈𝐶, 𝐷〉 curryF
(𝐹
∘func (𝐶swapF𝐷))))‘𝑋) = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))〉) |
18 | 1, 4, 17 | 3eqtrd 2780 |
. 2
⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))〉) |
19 | 12 | fvexi 6918 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
20 | 19 | mptex 7241 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)) ∈ V |
21 | 19, 19 | mpoex 8100 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔))) ∈ V |
22 | 20, 21 | op1std 8020 |
. . . . . . 7
⊢ (𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))〉 → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦))) |
23 | 18, 22 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦))) |
24 | | ovexd 7464 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦) ∈ V) |
25 | 23, 24 | fvmpt2d 7027 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((1st ‘𝐾)‘𝑦) = (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)) |
26 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func
(𝐶swapF𝐷)))) |
27 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Cat) |
28 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ Cat) |
29 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) |
30 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑋 ∈ 𝐴) |
31 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐾 = ((1st ‘𝐺)‘𝑋)) |
32 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
33 | 26, 6, 27, 28, 29, 30, 31, 12, 32 | tposcurf11 48970 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((1st ‘𝐾)‘𝑦) = (𝑦(1st ‘𝐹)𝑋)) |
34 | 25, 33 | eqtr3d 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦) = (𝑦(1st ‘𝐹)𝑋)) |
35 | 34 | mpteq2dva 5240 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝑦(1st ‘𝐹)𝑋))) |
36 | 20, 21 | op2ndd 8021 |
. . . . . . . . . 10
⊢ (𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))〉 → (2nd ‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))) |
37 | 18, 36 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (2nd
‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))) |
38 | | ovex 7462 |
. . . . . . . . . . 11
⊢ (𝑦𝐽𝑧) ∈ V |
39 | 38 | mptex 7241 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)) ∈ V |
40 | 39 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)) ∈ V) |
41 | 37, 40 | ovmpt4d 48741 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(2nd ‘𝐾)𝑧) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔))) |
42 | | ovexd 7464 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔) ∈ V) |
43 | 41, 42 | fvmpt2d 7027 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → ((𝑦(2nd ‘𝐾)𝑧)‘𝑔) = (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)) |
44 | 2 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func
(𝐶swapF𝐷)))) |
45 | 7 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐶 ∈ Cat) |
46 | 8 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐷 ∈ Cat) |
47 | 9 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) |
48 | 13 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑋 ∈ 𝐴) |
49 | 1 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐾 = ((1st ‘𝐺)‘𝑋)) |
50 | | simplrl 777 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑦 ∈ 𝐵) |
51 | | simplrr 778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑧 ∈ 𝐵) |
52 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑔 ∈ (𝑦𝐽𝑧)) |
53 | 44, 6, 45, 46, 47, 48, 49, 12, 50, 15, 16, 51, 52 | tposcurf12 48971 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → ((𝑦(2nd ‘𝐾)𝑧)‘𝑔) = (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋))) |
54 | 43, 53 | eqtr3d 2778 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔) = (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋))) |
55 | 54 | mpteq2dva 5240 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋)))) |
56 | 55 | 3impb 1115 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋)))) |
57 | 56 | mpoeq3dva 7508 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋))))) |
58 | 35, 57 | opeq12d 4879 |
. 2
⊢ (𝜑 → 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))〉 = 〈(𝑦 ∈ 𝐵 ↦ (𝑦(1st ‘𝐹)𝑋)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋))))〉) |
59 | 18, 58 | eqtrd 2776 |
1
⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑦(1st ‘𝐹)𝑋)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋))))〉) |