Proof of Theorem tposcurf1
| Step | Hyp | Ref
| Expression |
| 1 | | tposcurf1.k |
. . 3
⊢ (𝜑 → 𝐾 = ((1st ‘𝐺)‘𝑋)) |
| 2 | | tposcurf1.g |
. . . . 5
⊢ (𝜑 → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func
(𝐶swapF𝐷)))) |
| 3 | 2 | fveq2d 6890 |
. . . 4
⊢ (𝜑 → (1st
‘𝐺) = (1st
‘(〈𝐶, 𝐷〉 curryF
(𝐹
∘func (𝐶swapF𝐷))))) |
| 4 | 3 | fveq1d 6888 |
. . 3
⊢ (𝜑 → ((1st
‘𝐺)‘𝑋) = ((1st
‘(〈𝐶, 𝐷〉 curryF
(𝐹
∘func (𝐶swapF𝐷))))‘𝑋)) |
| 5 | | eqid 2734 |
. . . 4
⊢
(〈𝐶, 𝐷〉 curryF
(𝐹
∘func (𝐶swapF𝐷))) = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func
(𝐶swapF𝐷))) |
| 6 | | tposcurf1.a |
. . . 4
⊢ 𝐴 = (Base‘𝐶) |
| 7 | | tposcurf1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 8 | | tposcurf1.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 9 | | tposcurf1.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) |
| 10 | | eqidd 2735 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘func (𝐶swapF𝐷)) = (𝐹 ∘func (𝐶swapF𝐷))) |
| 11 | 7, 8, 9, 10 | cofuswapfcl 49038 |
. . . 4
⊢ (𝜑 → (𝐹 ∘func (𝐶swapF𝐷)) ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| 12 | | tposcurf1.b |
. . . 4
⊢ 𝐵 = (Base‘𝐷) |
| 13 | | tposcurf1.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 14 | | eqid 2734 |
. . . 4
⊢
((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func
(𝐶swapF𝐷))))‘𝑋) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐹 ∘func
(𝐶swapF𝐷))))‘𝑋) |
| 15 | | tposcurf1.j |
. . . 4
⊢ 𝐽 = (Hom ‘𝐷) |
| 16 | | tposcurf1.1 |
. . . 4
⊢ 1 =
(Id‘𝐶) |
| 17 | 5, 6, 7, 8, 11, 12, 13, 14, 15, 16 | curf1 18241 |
. . 3
⊢ (𝜑 → ((1st
‘(〈𝐶, 𝐷〉 curryF
(𝐹
∘func (𝐶swapF𝐷))))‘𝑋) = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))〉) |
| 18 | 1, 4, 17 | 3eqtrd 2773 |
. 2
⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))〉) |
| 19 | 12 | fvexi 6900 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
| 20 | 19 | mptex 7225 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)) ∈ V |
| 21 | 19, 19 | mpoex 8086 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔))) ∈ V |
| 22 | 20, 21 | op1std 8006 |
. . . . . . 7
⊢ (𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))〉 → (1st ‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦))) |
| 23 | 18, 22 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐾) = (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦))) |
| 24 | | ovexd 7448 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦) ∈ V) |
| 25 | 23, 24 | fvmpt2d 7009 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((1st ‘𝐾)‘𝑦) = (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)) |
| 26 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func
(𝐶swapF𝐷)))) |
| 27 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 28 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ Cat) |
| 29 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) |
| 30 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑋 ∈ 𝐴) |
| 31 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐾 = ((1st ‘𝐺)‘𝑋)) |
| 32 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 33 | 26, 6, 27, 28, 29, 30, 31, 12, 32 | tposcurf11 49042 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((1st ‘𝐾)‘𝑦) = (𝑦(1st ‘𝐹)𝑋)) |
| 34 | 25, 33 | eqtr3d 2771 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦) = (𝑦(1st ‘𝐹)𝑋)) |
| 35 | 34 | mpteq2dva 5222 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝑦(1st ‘𝐹)𝑋))) |
| 36 | 20, 21 | op2ndd 8007 |
. . . . . . . . . 10
⊢ (𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))〉 → (2nd ‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))) |
| 37 | 18, 36 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (2nd
‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))) |
| 38 | | ovex 7446 |
. . . . . . . . . . 11
⊢ (𝑦𝐽𝑧) ∈ V |
| 39 | 38 | mptex 7225 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)) ∈ V |
| 40 | 39 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)) ∈ V) |
| 41 | 37, 40 | ovmpt4d 48749 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(2nd ‘𝐾)𝑧) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔))) |
| 42 | | ovexd 7448 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔) ∈ V) |
| 43 | 41, 42 | fvmpt2d 7009 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → ((𝑦(2nd ‘𝐾)𝑧)‘𝑔) = (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)) |
| 44 | 2 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐺 = (〈𝐶, 𝐷〉 curryF (𝐹 ∘func
(𝐶swapF𝐷)))) |
| 45 | 7 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐶 ∈ Cat) |
| 46 | 8 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐷 ∈ Cat) |
| 47 | 9 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸)) |
| 48 | 13 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑋 ∈ 𝐴) |
| 49 | 1 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐾 = ((1st ‘𝐺)‘𝑋)) |
| 50 | | simplrl 776 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑦 ∈ 𝐵) |
| 51 | | simplrr 777 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑧 ∈ 𝐵) |
| 52 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑔 ∈ (𝑦𝐽𝑧)) |
| 53 | 44, 6, 45, 46, 47, 48, 49, 12, 50, 15, 16, 51, 52 | tposcurf12 49043 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → ((𝑦(2nd ‘𝐾)𝑧)‘𝑔) = (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋))) |
| 54 | 43, 53 | eqtr3d 2771 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔) = (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋))) |
| 55 | 54 | mpteq2dva 5222 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋)))) |
| 56 | 55 | 3impb 1114 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋)))) |
| 57 | 56 | mpoeq3dva 7492 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋))))) |
| 58 | 35, 57 | opeq12d 4861 |
. 2
⊢ (𝜑 → 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘(𝐹 ∘func (𝐶swapF𝐷)))𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘(𝐹 ∘func
(𝐶swapF𝐷)))〈𝑋, 𝑧〉)𝑔)))〉 = 〈(𝑦 ∈ 𝐵 ↦ (𝑦(1st ‘𝐹)𝑋)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋))))〉) |
| 59 | 18, 58 | eqtrd 2769 |
1
⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑦(1st ‘𝐹)𝑋)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(〈𝑦, 𝑋〉(2nd ‘𝐹)〈𝑧, 𝑋〉)( 1 ‘𝑋))))〉) |