Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposcurf1 Structured version   Visualization version   GIF version

Theorem tposcurf1 48972
Description: Value of the object part of the transposed curry functor. (Contributed by Zhi Wang, 9-Oct-2025.)
Hypotheses
Ref Expression
tposcurf1.g (𝜑𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))
tposcurf1.a 𝐴 = (Base‘𝐶)
tposcurf1.c (𝜑𝐶 ∈ Cat)
tposcurf1.d (𝜑𝐷 ∈ Cat)
tposcurf1.f (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))
tposcurf1.x (𝜑𝑋𝐴)
tposcurf1.k (𝜑𝐾 = ((1st𝐺)‘𝑋))
tposcurf1.b 𝐵 = (Base‘𝐷)
tposcurf1.j 𝐽 = (Hom ‘𝐷)
tposcurf1.1 1 = (Id‘𝐶)
Assertion
Ref Expression
tposcurf1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑦(1st𝐹)𝑋)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋))))⟩)
Distinct variable groups:   1 ,𝑔,𝑦,𝑧   𝑦,𝐴   𝐵,𝑔,𝑦,𝑧   𝐶,𝑔,𝑦,𝑧   𝐷,𝑔,𝑦,𝑧   𝑔,𝐸,𝑦,𝑧   𝑔,𝐹,𝑦,𝑧   𝑔,𝐽   𝑔,𝑋,𝑦,𝑧   𝜑,𝑔,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑧,𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐽(𝑦,𝑧)   𝐾(𝑦,𝑧,𝑔)

Proof of Theorem tposcurf1
StepHypRef Expression
1 tposcurf1.k . . 3 (𝜑𝐾 = ((1st𝐺)‘𝑋))
2 tposcurf1.g . . . . 5 (𝜑𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))
32fveq2d 6908 . . . 4 (𝜑 → (1st𝐺) = (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷)))))
43fveq1d 6906 . . 3 (𝜑 → ((1st𝐺)‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))‘𝑋))
5 eqid 2736 . . . 4 (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))) = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷)))
6 tposcurf1.a . . . 4 𝐴 = (Base‘𝐶)
7 tposcurf1.c . . . 4 (𝜑𝐶 ∈ Cat)
8 tposcurf1.d . . . 4 (𝜑𝐷 ∈ Cat)
9 tposcurf1.f . . . . 5 (𝜑𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))
10 eqidd 2737 . . . . 5 (𝜑 → (𝐹func (𝐶swapF𝐷)) = (𝐹func (𝐶swapF𝐷)))
117, 8, 9, 10cofuswapfcl 48966 . . . 4 (𝜑 → (𝐹func (𝐶swapF𝐷)) ∈ ((𝐶 ×c 𝐷) Func 𝐸))
12 tposcurf1.b . . . 4 𝐵 = (Base‘𝐷)
13 tposcurf1.x . . . 4 (𝜑𝑋𝐴)
14 eqid 2736 . . . 4 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))‘𝑋) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))‘𝑋)
15 tposcurf1.j . . . 4 𝐽 = (Hom ‘𝐷)
16 tposcurf1.1 . . . 4 1 = (Id‘𝐶)
175, 6, 7, 8, 11, 12, 13, 14, 15, 16curf1 18266 . . 3 (𝜑 → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))‘𝑋) = ⟨(𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶swapF𝐷)))𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔)))⟩)
181, 4, 173eqtrd 2780 . 2 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶swapF𝐷)))𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔)))⟩)
1912fvexi 6918 . . . . . . . . 9 𝐵 ∈ V
2019mptex 7241 . . . . . . . 8 (𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶swapF𝐷)))𝑦)) ∈ V
2119, 19mpoex 8100 . . . . . . . 8 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔))) ∈ V
2220, 21op1std 8020 . . . . . . 7 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶swapF𝐷)))𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔)))⟩ → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶swapF𝐷)))𝑦)))
2318, 22syl 17 . . . . . 6 (𝜑 → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶swapF𝐷)))𝑦)))
24 ovexd 7464 . . . . . 6 ((𝜑𝑦𝐵) → (𝑋(1st ‘(𝐹func (𝐶swapF𝐷)))𝑦) ∈ V)
2523, 24fvmpt2d 7027 . . . . 5 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = (𝑋(1st ‘(𝐹func (𝐶swapF𝐷)))𝑦))
262adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))
277adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐶 ∈ Cat)
288adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐷 ∈ Cat)
299adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))
3013adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝑋𝐴)
311adantr 480 . . . . . 6 ((𝜑𝑦𝐵) → 𝐾 = ((1st𝐺)‘𝑋))
32 simpr 484 . . . . . 6 ((𝜑𝑦𝐵) → 𝑦𝐵)
3326, 6, 27, 28, 29, 30, 31, 12, 32tposcurf11 48970 . . . . 5 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = (𝑦(1st𝐹)𝑋))
3425, 33eqtr3d 2778 . . . 4 ((𝜑𝑦𝐵) → (𝑋(1st ‘(𝐹func (𝐶swapF𝐷)))𝑦) = (𝑦(1st𝐹)𝑋))
3534mpteq2dva 5240 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶swapF𝐷)))𝑦)) = (𝑦𝐵 ↦ (𝑦(1st𝐹)𝑋)))
3620, 21op2ndd 8021 . . . . . . . . . 10 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶swapF𝐷)))𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔)))⟩ → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔))))
3718, 36syl 17 . . . . . . . . 9 (𝜑 → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔))))
38 ovex 7462 . . . . . . . . . . 11 (𝑦𝐽𝑧) ∈ V
3938mptex 7241 . . . . . . . . . 10 (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔)) ∈ V
4039a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔)) ∈ V)
4137, 40ovmpt4d 48741 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(2nd𝐾)𝑧) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔)))
42 ovexd 7464 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔) ∈ V)
4341, 42fvmpt2d 7027 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔))
442ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐺 = (⟨𝐶, 𝐷⟩ curryF (𝐹func (𝐶swapF𝐷))))
457ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐶 ∈ Cat)
468ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐷 ∈ Cat)
479ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐹 ∈ ((𝐷 ×c 𝐶) Func 𝐸))
4813ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑋𝐴)
491ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝐾 = ((1st𝐺)‘𝑋))
50 simplrl 777 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑦𝐵)
51 simplrr 778 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑧𝐵)
52 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑔 ∈ (𝑦𝐽𝑧))
5344, 6, 45, 46, 47, 48, 49, 12, 50, 15, 16, 51, 52tposcurf12 48971 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋)))
5443, 53eqtr3d 2778 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔) = (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋)))
5554mpteq2dva 5240 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋))))
56553impb 1115 . . . 4 ((𝜑𝑦𝐵𝑧𝐵) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋))))
5756mpoeq3dva 7508 . . 3 (𝜑 → (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋)))))
5835, 57opeq12d 4879 . 2 (𝜑 → ⟨(𝑦𝐵 ↦ (𝑋(1st ‘(𝐹func (𝐶swapF𝐷)))𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd ‘(𝐹func (𝐶swapF𝐷)))⟨𝑋, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦𝐵 ↦ (𝑦(1st𝐹)𝑋)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋))))⟩)
5918, 58eqtrd 2776 1 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑦(1st𝐹)𝑋)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (𝑔(⟨𝑦, 𝑋⟩(2nd𝐹)⟨𝑧, 𝑋⟩)( 1𝑋))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3479  cop 4630  cmpt 5223  cfv 6559  (class class class)co 7429  cmpo 7431  1st c1st 8008  2nd c2nd 8009  Basecbs 17243  Hom chom 17304  Catccat 17703  Idccid 17704   Func cfunc 17895  func ccofu 17897   ×c cxpc 18209   curryF ccurf 18251  swapFcswapf 48938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-er 8741  df-map 8864  df-ixp 8934  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-z 12610  df-dec 12730  df-uz 12875  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17244  df-hom 17317  df-cco 17318  df-cat 17707  df-cid 17708  df-func 17899  df-cofu 17901  df-xpc 18213  df-curf 18255  df-swapf 48939
This theorem is referenced by:  precofval  49035  precofvalALT  49036
  Copyright terms: Public domain W3C validator