MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2d Structured version   Visualization version   GIF version

Theorem fvmpt2d 6947
Description: Deduction version of fvmpt2 6945. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fvmpt2d.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2d ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
21fveq1d 6828 . . 3 (𝜑 → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4 id 22 . . 3 (𝑥𝐴𝑥𝐴)
5 fvmpt2d.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
6 eqid 2729 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fvmpt2 6945 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
84, 5, 7syl2an2 686 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
93, 8eqtrd 2764 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5176  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  cantnflem1  9604  ghmquskerco  19181  frlmphl  21706  neiptopreu  23036  rrxds  25309  ofoprabco  32621  suppovss  32637  tocycf  33072  elrgspnsubrunlem2  33198  ply1moneq  33531  fedgmullem2  33602  esumcvg  34052  ofcfval2  34070  eulerpartgbij  34339  dstrvprob  34439  itgexpif  34573  hgt750lemb  34623  aks6d1c6lem4  42146  frlmsnic  42513  cvgdvgrat  44286  radcnvrat  44287  binomcxplemnotnn0  44329  fmuldfeqlem1  45564  climreclmpt  45666  climinfmpt  45697  limsupubuzmpt  45701  limsupre2mpt  45712  limsupre3mpt  45716  limsupreuzmpt  45721  liminfvalxrmpt  45768  liminflbuz2  45797  cncficcgt0  45870  dvdivbd  45905  dvnmul  45925  dvnprodlem1  45928  dvnprodlem2  45929  stoweidlem42  46024  dirkeritg  46084  elaa2lem  46215  etransclem4  46220  ioorrnopnxrlem  46288  subsaliuncllem  46339  meaiuninclem  46462  meaiininclem  46468  ovnhoilem1  46583  ovncvr2  46593  ovolval4lem1  46631  iccvonmbllem  46660  vonioolem1  46662  vonioolem2  46663  vonicclem1  46665  vonicclem2  46666  pimconstlt0  46683  pimconstlt1  46684  smfpimltmpt  46728  issmfdmpt  46730  smfaddlem2  46746  smflimlem2  46754  smflimlem4  46756  smfpimgtmpt  46763  smfmullem4  46776  smfpimcclem  46789  smfsuplem1  46793  smfsupmpt  46797  smfinfmpt  46801  smflimsuplem2  46803  smflimsuplem3  46804  smflimsuplem4  46805  fsupdm  46824  finfdm  46828  tposcurf1  49285  fucocolem4  49342
  Copyright terms: Public domain W3C validator