MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2d Structured version   Visualization version   GIF version

Theorem fvmpt2d 7004
Description: Deduction version of fvmpt2 7002. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fvmpt2d.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2d ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
21fveq1d 6883 . . 3 (𝜑 → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4 id 22 . . 3 (𝑥𝐴𝑥𝐴)
5 fvmpt2d.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
6 eqid 2736 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fvmpt2 7002 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
84, 5, 7syl2an2 686 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
93, 8eqtrd 2771 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5206  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544
This theorem is referenced by:  cantnflem1  9708  ghmquskerco  19272  frlmphl  21746  neiptopreu  23076  rrxds  25350  ofoprabco  32647  suppovss  32663  tocycf  33133  elrgspnsubrunlem2  33248  ply1moneq  33604  fedgmullem2  33675  esumcvg  34122  ofcfval2  34140  eulerpartgbij  34409  dstrvprob  34509  itgexpif  34643  hgt750lemb  34693  aks6d1c6lem4  42191  frlmsnic  42530  cvgdvgrat  44304  radcnvrat  44305  binomcxplemnotnn0  44347  fmuldfeqlem1  45578  climreclmpt  45680  climinfmpt  45711  limsupubuzmpt  45715  limsupre2mpt  45726  limsupre3mpt  45730  limsupreuzmpt  45735  liminfvalxrmpt  45782  liminflbuz2  45811  cncficcgt0  45884  dvdivbd  45919  dvnmul  45939  dvnprodlem1  45942  dvnprodlem2  45943  stoweidlem42  46038  dirkeritg  46098  elaa2lem  46229  etransclem4  46234  ioorrnopnxrlem  46302  subsaliuncllem  46353  meaiuninclem  46476  meaiininclem  46482  ovnhoilem1  46597  ovncvr2  46607  ovolval4lem1  46645  iccvonmbllem  46674  vonioolem1  46676  vonioolem2  46677  vonicclem1  46679  vonicclem2  46680  pimconstlt0  46697  pimconstlt1  46698  smfpimltmpt  46742  issmfdmpt  46744  smfaddlem2  46760  smflimlem2  46768  smflimlem4  46770  smfpimgtmpt  46777  smfmullem4  46790  smfpimcclem  46803  smfsuplem1  46807  smfsupmpt  46811  smfinfmpt  46815  smflimsuplem2  46817  smflimsuplem3  46818  smflimsuplem4  46819  fsupdm  46838  finfdm  46842  tposcurf1  49177  fucocolem4  49234
  Copyright terms: Public domain W3C validator