Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmpt2d | Structured version Visualization version GIF version |
Description: Deduction version of fvmpt2 6888. (Contributed by Thierry Arnoux, 8-Dec-2016.) |
Ref | Expression |
---|---|
fvmpt2d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
fvmpt2d.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
fvmpt2d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt2d.1 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
2 | 1 | fveq1d 6778 | . . 3 ⊢ (𝜑 → (𝐹‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
3 | 2 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
4 | id 22 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
5 | fvmpt2d.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
6 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 6 | fvmpt2 6888 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
8 | 4, 5, 7 | syl2an2 683 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
9 | 3, 8 | eqtrd 2778 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
Copyright terms: Public domain | W3C validator |