MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2d Structured version   Visualization version   GIF version

Theorem fvmpt2d 7042
Description: Deduction version of fvmpt2 7040. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fvmpt2d.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2d ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
21fveq1d 6922 . . 3 (𝜑 → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4 id 22 . . 3 (𝑥𝐴𝑥𝐴)
5 fvmpt2d.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
6 eqid 2740 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fvmpt2 7040 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
84, 5, 7syl2an2 685 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
93, 8eqtrd 2780 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cmpt 5249  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  cantnflem1  9758  ghmquskerco  19324  frlmphl  21824  neiptopreu  23162  rrxds  25446  ofoprabco  32682  suppovss  32697  tocycf  33110  ply1moneq  33576  fedgmullem2  33643  esumcvg  34050  ofcfval2  34068  eulerpartgbij  34337  dstrvprob  34436  itgexpif  34583  hgt750lemb  34633  aks6d1c6lem4  42130  frlmsnic  42495  cvgdvgrat  44282  radcnvrat  44283  binomcxplemnotnn0  44325  fmuldfeqlem1  45503  climreclmpt  45605  climinfmpt  45636  limsupubuzmpt  45640  limsupre2mpt  45651  limsupre3mpt  45655  limsupreuzmpt  45660  liminfvalxrmpt  45707  liminflbuz2  45736  cncficcgt0  45809  dvdivbd  45844  dvnmul  45864  dvnprodlem1  45867  dvnprodlem2  45868  stoweidlem42  45963  dirkeritg  46023  elaa2lem  46154  etransclem4  46159  ioorrnopnxrlem  46227  subsaliuncllem  46278  meaiuninclem  46401  meaiininclem  46407  ovnhoilem1  46522  ovncvr2  46532  ovolval4lem1  46570  iccvonmbllem  46599  vonioolem1  46601  vonioolem2  46602  vonicclem1  46604  vonicclem2  46605  pimconstlt0  46622  pimconstlt1  46623  smfpimltmpt  46667  issmfdmpt  46669  smfaddlem2  46685  smflimlem2  46693  smflimlem4  46695  smfpimgtmpt  46702  smfmullem4  46715  smfpimcclem  46728  smfsuplem1  46732  smfsupmpt  46736  smfinfmpt  46740  smflimsuplem2  46742  smflimsuplem3  46743  smflimsuplem4  46744  fsupdm  46763  finfdm  46767
  Copyright terms: Public domain W3C validator