MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2d Structured version   Visualization version   GIF version

Theorem fvmpt2d 6942
Description: Deduction version of fvmpt2 6940. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fvmpt2d.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2d ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
21fveq1d 6824 . . 3 (𝜑 → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4 id 22 . . 3 (𝑥𝐴𝑥𝐴)
5 fvmpt2d.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
6 eqid 2731 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fvmpt2 6940 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
84, 5, 7syl2an2 686 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
93, 8eqtrd 2766 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cmpt 5172  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  cantnflem1  9579  ghmquskerco  19194  frlmphl  21716  neiptopreu  23046  rrxds  25318  ofoprabco  32641  suppovss  32657  tocycf  33081  elrgspnsubrunlem2  33210  ply1moneq  33545  mplvrpmmhm  33571  fedgmullem2  33638  esumcvg  34094  ofcfval2  34112  eulerpartgbij  34380  dstrvprob  34480  itgexpif  34614  hgt750lemb  34664  aks6d1c6lem4  42205  frlmsnic  42572  cvgdvgrat  44345  radcnvrat  44346  binomcxplemnotnn0  44388  fmuldfeqlem1  45621  climreclmpt  45721  climinfmpt  45752  limsupubuzmpt  45756  limsupre2mpt  45767  limsupre3mpt  45771  limsupreuzmpt  45776  liminfvalxrmpt  45823  liminflbuz2  45852  cncficcgt0  45925  dvdivbd  45960  dvnmul  45980  dvnprodlem1  45983  dvnprodlem2  45984  stoweidlem42  46079  dirkeritg  46139  elaa2lem  46270  etransclem4  46275  ioorrnopnxrlem  46343  subsaliuncllem  46394  meaiuninclem  46517  meaiininclem  46523  ovnhoilem1  46638  ovncvr2  46648  ovolval4lem1  46686  iccvonmbllem  46715  vonioolem1  46717  vonioolem2  46718  vonicclem1  46720  vonicclem2  46721  pimconstlt0  46738  pimconstlt1  46739  smfpimltmpt  46783  issmfdmpt  46785  smfaddlem2  46801  smflimlem2  46809  smflimlem4  46811  smfpimgtmpt  46818  smfmullem4  46831  smfpimcclem  46844  smfsuplem1  46848  smfsupmpt  46852  smfinfmpt  46856  smflimsuplem2  46858  smflimsuplem3  46859  smflimsuplem4  46860  fsupdm  46879  finfdm  46883  tposcurf1  49330  fucocolem4  49387
  Copyright terms: Public domain W3C validator