MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2d Structured version   Visualization version   GIF version

Theorem fvmpt2d 6882
Description: Deduction version of fvmpt2 6880. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fvmpt2d.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2d ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
21fveq1d 6770 . . 3 (𝜑 → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4 id 22 . . 3 (𝑥𝐴𝑥𝐴)
5 fvmpt2d.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
6 eqid 2739 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fvmpt2 6880 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
84, 5, 7syl2an2 682 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
93, 8eqtrd 2779 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cmpt 5161  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fv 6438
This theorem is referenced by:  cantnflem1  9408  frlmphl  20969  neiptopreu  22265  rrxds  24538  ofoprabco  30980  suppovss  30996  tocycf  31363  fedgmullem2  31690  esumcvg  32033  ofcfval2  32051  eulerpartgbij  32318  dstrvprob  32417  itgexpif  32565  hgt750lemb  32615  frlmsnic  40243  cvgdvgrat  41884  radcnvrat  41885  binomcxplemnotnn0  41927  fmuldfeqlem1  43077  climreclmpt  43179  climinfmpt  43210  limsupubuzmpt  43214  limsupre2mpt  43225  limsupre3mpt  43229  limsupreuzmpt  43234  liminfvalxrmpt  43281  liminflbuz2  43310  cncficcgt0  43383  dvdivbd  43418  dvnmul  43438  dvnprodlem1  43441  dvnprodlem2  43442  stoweidlem42  43537  dirkeritg  43597  elaa2lem  43728  etransclem4  43733  ioorrnopnxrlem  43801  subsaliuncllem  43850  meaiuninclem  43972  meaiininclem  43978  ovnhoilem1  44093  ovncvr2  44103  ovolval4lem1  44141  iccvonmbllem  44170  vonioolem1  44172  vonioolem2  44173  vonicclem1  44175  vonicclem2  44176  pimconstlt0  44192  pimconstlt1  44193  pimgtmnf  44210  smfpimltmpt  44233  issmfdmpt  44235  smfpimltxrmpt  44245  smfaddlem2  44250  smflimlem2  44258  smflimlem4  44260  smfpimgtmpt  44267  smfpimgtxrmpt  44270  smfmullem4  44279  smfpimcclem  44291  smfsuplem1  44295  smfsupmpt  44299  smfinfmpt  44303  smflimsuplem2  44305  smflimsuplem3  44306  smflimsuplem4  44307
  Copyright terms: Public domain W3C validator