MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2d Structured version   Visualization version   GIF version

Theorem fvmpt2d 7028
Description: Deduction version of fvmpt2 7026. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fvmpt2d.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2d ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
21fveq1d 6908 . . 3 (𝜑 → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4 id 22 . . 3 (𝑥𝐴𝑥𝐴)
5 fvmpt2d.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
6 eqid 2734 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fvmpt2 7026 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
84, 5, 7syl2an2 686 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
93, 8eqtrd 2774 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  cmpt 5230  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fv 6570
This theorem is referenced by:  cantnflem1  9726  ghmquskerco  19314  frlmphl  21818  neiptopreu  23156  rrxds  25440  ofoprabco  32680  suppovss  32695  tocycf  33119  ply1moneq  33590  fedgmullem2  33657  esumcvg  34066  ofcfval2  34084  eulerpartgbij  34353  dstrvprob  34452  itgexpif  34599  hgt750lemb  34649  aks6d1c6lem4  42154  frlmsnic  42526  cvgdvgrat  44308  radcnvrat  44309  binomcxplemnotnn0  44351  fmuldfeqlem1  45537  climreclmpt  45639  climinfmpt  45670  limsupubuzmpt  45674  limsupre2mpt  45685  limsupre3mpt  45689  limsupreuzmpt  45694  liminfvalxrmpt  45741  liminflbuz2  45770  cncficcgt0  45843  dvdivbd  45878  dvnmul  45898  dvnprodlem1  45901  dvnprodlem2  45902  stoweidlem42  45997  dirkeritg  46057  elaa2lem  46188  etransclem4  46193  ioorrnopnxrlem  46261  subsaliuncllem  46312  meaiuninclem  46435  meaiininclem  46441  ovnhoilem1  46556  ovncvr2  46566  ovolval4lem1  46604  iccvonmbllem  46633  vonioolem1  46635  vonioolem2  46636  vonicclem1  46638  vonicclem2  46639  pimconstlt0  46656  pimconstlt1  46657  smfpimltmpt  46701  issmfdmpt  46703  smfaddlem2  46719  smflimlem2  46727  smflimlem4  46729  smfpimgtmpt  46736  smfmullem4  46749  smfpimcclem  46762  smfsuplem1  46766  smfsupmpt  46770  smfinfmpt  46774  smflimsuplem2  46776  smflimsuplem3  46777  smflimsuplem4  46778  fsupdm  46797  finfdm  46801
  Copyright terms: Public domain W3C validator