MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2d Structured version   Visualization version   GIF version

Theorem fvmpt2d 6948
Description: Deduction version of fvmpt2 6946. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fvmpt2d.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2d ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
21fveq1d 6830 . . 3 (𝜑 → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4 id 22 . . 3 (𝑥𝐴𝑥𝐴)
5 fvmpt2d.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
6 eqid 2733 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fvmpt2 6946 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
84, 5, 7syl2an2 686 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
93, 8eqtrd 2768 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cmpt 5174  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  cantnflem1  9586  ghmquskerco  19198  frlmphl  21720  neiptopreu  23049  rrxds  25321  ofoprabco  32648  suppovss  32666  tocycf  33093  elrgspnsubrunlem2  33222  ply1moneq  33557  mplvrpmmhm  33594  fedgmullem2  33664  esumcvg  34120  ofcfval2  34138  eulerpartgbij  34406  dstrvprob  34506  itgexpif  34640  hgt750lemb  34690  aks6d1c6lem4  42286  frlmsnic  42658  cvgdvgrat  44430  radcnvrat  44431  binomcxplemnotnn0  44473  fmuldfeqlem1  45706  climreclmpt  45806  climinfmpt  45837  limsupubuzmpt  45841  limsupre2mpt  45852  limsupre3mpt  45856  limsupreuzmpt  45861  liminfvalxrmpt  45908  liminflbuz2  45937  cncficcgt0  46010  dvdivbd  46045  dvnmul  46065  dvnprodlem1  46068  dvnprodlem2  46069  stoweidlem42  46164  dirkeritg  46224  elaa2lem  46355  etransclem4  46360  ioorrnopnxrlem  46428  subsaliuncllem  46479  meaiuninclem  46602  meaiininclem  46608  ovnhoilem1  46723  ovncvr2  46733  ovolval4lem1  46771  iccvonmbllem  46800  vonioolem1  46802  vonioolem2  46803  vonicclem1  46805  vonicclem2  46806  pimconstlt0  46823  pimconstlt1  46824  smfpimltmpt  46868  issmfdmpt  46870  smfaddlem2  46886  smflimlem2  46894  smflimlem4  46896  smfpimgtmpt  46903  smfmullem4  46916  smfpimcclem  46929  smfsuplem1  46933  smfsupmpt  46937  smfinfmpt  46941  smflimsuplem2  46943  smflimsuplem3  46944  smflimsuplem4  46945  fsupdm  46964  finfdm  46968  tposcurf1  49424  fucocolem4  49481
  Copyright terms: Public domain W3C validator