MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2d Structured version   Visualization version   GIF version

Theorem fvmpt2d 7009
Description: Deduction version of fvmpt2 7007. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fvmpt2d.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2d ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
21fveq1d 6891 . . 3 (𝜑 → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
32adantr 482 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4 id 22 . . 3 (𝑥𝐴𝑥𝐴)
5 fvmpt2d.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
6 eqid 2733 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fvmpt2 7007 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
84, 5, 7syl2an2 685 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
93, 8eqtrd 2773 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cmpt 5231  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fv 6549
This theorem is referenced by:  cantnflem1  9681  frlmphl  21328  neiptopreu  22629  rrxds  24902  ofoprabco  31877  suppovss  31894  tocycf  32264  ghmquskerco  32518  ply1moneq  32654  fedgmullem2  32704  esumcvg  33073  ofcfval2  33091  eulerpartgbij  33360  dstrvprob  33459  itgexpif  33607  hgt750lemb  33657  frlmsnic  41108  cvgdvgrat  43058  radcnvrat  43059  binomcxplemnotnn0  43101  fmuldfeqlem1  44285  climreclmpt  44387  climinfmpt  44418  limsupubuzmpt  44422  limsupre2mpt  44433  limsupre3mpt  44437  limsupreuzmpt  44442  liminfvalxrmpt  44489  liminflbuz2  44518  cncficcgt0  44591  dvdivbd  44626  dvnmul  44646  dvnprodlem1  44649  dvnprodlem2  44650  stoweidlem42  44745  dirkeritg  44805  elaa2lem  44936  etransclem4  44941  ioorrnopnxrlem  45009  subsaliuncllem  45060  meaiuninclem  45183  meaiininclem  45189  ovnhoilem1  45304  ovncvr2  45314  ovolval4lem1  45352  iccvonmbllem  45381  vonioolem1  45383  vonioolem2  45384  vonicclem1  45386  vonicclem2  45387  pimconstlt0  45404  pimconstlt1  45405  smfpimltmpt  45449  issmfdmpt  45451  smfaddlem2  45467  smflimlem2  45475  smflimlem4  45477  smfpimgtmpt  45484  smfmullem4  45497  smfpimcclem  45510  smfsuplem1  45514  smfsupmpt  45518  smfinfmpt  45522  smflimsuplem2  45524  smflimsuplem3  45525  smflimsuplem4  45526  fsupdm  45545  finfdm  45549
  Copyright terms: Public domain W3C validator