| Step | Hyp | Ref
| Expression |
| 1 | | iinfssc.1 |
. . . 4
⊢ (𝜑 → 𝐴 ≠ ∅) |
| 2 | | iinfssc.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) |
| 3 | | eqidd 2735 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom dom 𝐻 = dom dom 𝐻) |
| 4 | 2, 3 | sscfn1 17833 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻)) |
| 5 | | eqidd 2735 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom dom 𝐽 = dom dom 𝐽) |
| 6 | 2, 5 | sscfn2 17834 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
| 7 | 4, 6, 2 | ssc1 17837 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom dom 𝐻 ⊆ dom dom 𝐽) |
| 8 | 7 | ralrimiva 3133 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽) |
| 9 | | r19.2z 4475 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽) → ∃𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽) |
| 10 | 1, 8, 9 | syl2anc 584 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽) |
| 11 | | iinss 5036 |
. . 3
⊢
(∃𝑥 ∈
𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 → ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽) |
| 12 | 10, 11 | syl 17 |
. 2
⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽) |
| 13 | | iinfssc.3 |
. . . . . 6
⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩
𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩
𝑥 ∈ 𝐴 (𝐻‘𝑦))) |
| 14 | | nfv 1913 |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
| 15 | 1, 2, 13, 3, 14 | iinfssclem1 48927 |
. . . . 5
⊢ (𝜑 → 𝐾 = (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻, 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ↦ ∩
𝑥 ∈ 𝐴 (𝑧𝐻𝑤))) |
| 16 | | ovex 7446 |
. . . . . . . 8
⊢ (𝑧𝐻𝑤) ∈ V |
| 17 | 16 | rgenw 3054 |
. . . . . . 7
⊢
∀𝑥 ∈
𝐴 (𝑧𝐻𝑤) ∈ V |
| 18 | | iinexg 5328 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ∈ V) → ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ∈ V) |
| 19 | 1, 17, 18 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ∈ V) |
| 20 | 19 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) → ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ∈ V) |
| 21 | 15, 20 | ovmpt4d 48749 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) → (𝑧𝐾𝑤) = ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤)) |
| 22 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) → 𝐴 ≠ ∅) |
| 23 | | nfii1 5009 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∩ 𝑥 ∈ 𝐴 dom dom 𝐻 |
| 24 | 23 | nfcri 2889 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 |
| 25 | 23 | nfcri 2889 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 |
| 26 | 24, 25 | nfan 1898 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻) |
| 27 | 14, 26 | nfan 1898 |
. . . . . . 7
⊢
Ⅎ𝑥(𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) |
| 28 | 4 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) ∧ 𝑥 ∈ 𝐴) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻)) |
| 29 | 2 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) |
| 30 | | iinss2 5037 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐻) |
| 31 | 30 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) ∧ 𝑥 ∈ 𝐴) → ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐻) |
| 32 | | simplrl 776 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) ∧ 𝑥 ∈ 𝐴) → 𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻) |
| 33 | 31, 32 | sseldd 3964 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) ∧ 𝑥 ∈ 𝐴) → 𝑧 ∈ dom dom 𝐻) |
| 34 | | simplrr 777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) ∧ 𝑥 ∈ 𝐴) → 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻) |
| 35 | 31, 34 | sseldd 3964 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) ∧ 𝑥 ∈ 𝐴) → 𝑤 ∈ dom dom 𝐻) |
| 36 | 28, 29, 33, 35 | ssc2 17838 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) ∧ 𝑥 ∈ 𝐴) → (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤)) |
| 37 | 27, 36 | ralrimia 3244 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) → ∀𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤)) |
| 38 | 22, 37 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) → (𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤))) |
| 39 | | r19.2z 4475 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤)) → ∃𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤)) |
| 40 | | iinss 5036 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤) → ∩
𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤)) |
| 41 | 38, 39, 40 | 3syl 18 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) → ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤)) |
| 42 | 21, 41 | eqsstrd 3998 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) → (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤)) |
| 43 | 42 | ralrimivva 3189 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻∀𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻(𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤)) |
| 44 | 1, 2, 13, 3, 14 | iinfssclem2 48928 |
. . 3
⊢ (𝜑 → 𝐾 Fn (∩
𝑥 ∈ 𝐴 dom dom 𝐻 × ∩
𝑥 ∈ 𝐴 dom dom 𝐻)) |
| 45 | | n0 4333 |
. . . . 5
⊢ (𝐴 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐴) |
| 46 | 1, 45 | sylib 218 |
. . . 4
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| 47 | 46, 6 | exlimddv 1934 |
. . 3
⊢ (𝜑 → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
| 48 | | sscrel 17829 |
. . . . . . . 8
⊢ Rel
⊆cat |
| 49 | 48 | brrelex2i 5722 |
. . . . . . 7
⊢ (𝐻 ⊆cat 𝐽 → 𝐽 ∈ V) |
| 50 | 2, 49 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐽 ∈ V) |
| 51 | 46, 50 | exlimddv 1934 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ V) |
| 52 | 51 | dmexd 7907 |
. . . 4
⊢ (𝜑 → dom 𝐽 ∈ V) |
| 53 | 52 | dmexd 7907 |
. . 3
⊢ (𝜑 → dom dom 𝐽 ∈ V) |
| 54 | 44, 47, 53 | isssc 17836 |
. 2
⊢ (𝜑 → (𝐾 ⊆cat 𝐽 ↔ (∩
𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 ∧ ∀𝑧 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻∀𝑤 ∈ ∩
𝑥 ∈ 𝐴 dom dom 𝐻(𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤)))) |
| 55 | 12, 43, 54 | mpbir2and 713 |
1
⊢ (𝜑 → 𝐾 ⊆cat 𝐽) |