Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfssc Structured version   Visualization version   GIF version

Theorem iinfssc 49034
Description: Indexed intersection of subcategories is a subcategory (the category-agnostic version). (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
iinfssc.1 (𝜑𝐴 ≠ ∅)
iinfssc.2 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
iinfssc.3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
Assertion
Ref Expression
iinfssc (𝜑𝐾cat 𝐽)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐻   𝑥,𝐽   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥)   𝐽(𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem iinfssc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iinfssc.1 . . . 4 (𝜑𝐴 ≠ ∅)
2 iinfssc.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
3 eqidd 2731 . . . . . . 7 ((𝜑𝑥𝐴) → dom dom 𝐻 = dom dom 𝐻)
42, 3sscfn1 17785 . . . . . 6 ((𝜑𝑥𝐴) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
5 eqidd 2731 . . . . . . 7 ((𝜑𝑥𝐴) → dom dom 𝐽 = dom dom 𝐽)
62, 5sscfn2 17786 . . . . . 6 ((𝜑𝑥𝐴) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽))
74, 6, 2ssc1 17789 . . . . 5 ((𝜑𝑥𝐴) → dom dom 𝐻 ⊆ dom dom 𝐽)
87ralrimiva 3126 . . . 4 (𝜑 → ∀𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽)
9 r19.2z 4460 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽) → ∃𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽)
101, 8, 9syl2anc 584 . . 3 (𝜑 → ∃𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽)
11 iinss 5022 . . 3 (∃𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽)
1210, 11syl 17 . 2 (𝜑 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽)
13 iinfssc.3 . . . . . 6 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
14 nfv 1914 . . . . . 6 𝑥𝜑
151, 2, 13, 3, 14iinfssclem1 49031 . . . . 5 (𝜑𝐾 = (𝑧 𝑥𝐴 dom dom 𝐻, 𝑤 𝑥𝐴 dom dom 𝐻 𝑥𝐴 (𝑧𝐻𝑤)))
16 ovex 7422 . . . . . . . 8 (𝑧𝐻𝑤) ∈ V
1716rgenw 3049 . . . . . . 7 𝑥𝐴 (𝑧𝐻𝑤) ∈ V
18 iinexg 5305 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝑧𝐻𝑤) ∈ V) → 𝑥𝐴 (𝑧𝐻𝑤) ∈ V)
191, 17, 18sylancl 586 . . . . . 6 (𝜑 𝑥𝐴 (𝑧𝐻𝑤) ∈ V)
2019adantr 480 . . . . 5 ((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) → 𝑥𝐴 (𝑧𝐻𝑤) ∈ V)
2115, 20ovmpt4d 48841 . . . 4 ((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) → (𝑧𝐾𝑤) = 𝑥𝐴 (𝑧𝐻𝑤))
221adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) → 𝐴 ≠ ∅)
23 nfii1 4995 . . . . . . . . . 10 𝑥 𝑥𝐴 dom dom 𝐻
2423nfcri 2884 . . . . . . . . 9 𝑥 𝑧 𝑥𝐴 dom dom 𝐻
2523nfcri 2884 . . . . . . . . 9 𝑥 𝑤 𝑥𝐴 dom dom 𝐻
2624, 25nfan 1899 . . . . . . . 8 𝑥(𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)
2714, 26nfan 1899 . . . . . . 7 𝑥(𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻))
284adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
292adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → 𝐻cat 𝐽)
30 iinss2 5023 . . . . . . . . . 10 (𝑥𝐴 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐻)
3130adantl 481 . . . . . . . . 9 (((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐻)
32 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → 𝑧 𝑥𝐴 dom dom 𝐻)
3331, 32sseldd 3949 . . . . . . . 8 (((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → 𝑧 ∈ dom dom 𝐻)
34 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → 𝑤 𝑥𝐴 dom dom 𝐻)
3531, 34sseldd 3949 . . . . . . . 8 (((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → 𝑤 ∈ dom dom 𝐻)
3628, 29, 33, 35ssc2 17790 . . . . . . 7 (((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) ∧ 𝑥𝐴) → (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤))
3727, 36ralrimia 3237 . . . . . 6 ((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) → ∀𝑥𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤))
3822, 37jca 511 . . . . 5 ((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) → (𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤)))
39 r19.2z 4460 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤)) → ∃𝑥𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤))
40 iinss 5022 . . . . 5 (∃𝑥𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤) → 𝑥𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤))
4138, 39, 403syl 18 . . . 4 ((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) → 𝑥𝐴 (𝑧𝐻𝑤) ⊆ (𝑧𝐽𝑤))
4221, 41eqsstrd 3983 . . 3 ((𝜑 ∧ (𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻)) → (𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))
4342ralrimivva 3181 . 2 (𝜑 → ∀𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻(𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))
441, 2, 13, 3, 14iinfssclem2 49032 . . 3 (𝜑𝐾 Fn ( 𝑥𝐴 dom dom 𝐻 × 𝑥𝐴 dom dom 𝐻))
45 n0 4318 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
461, 45sylib 218 . . . 4 (𝜑 → ∃𝑥 𝑥𝐴)
4746, 6exlimddv 1935 . . 3 (𝜑𝐽 Fn (dom dom 𝐽 × dom dom 𝐽))
48 sscrel 17781 . . . . . . . 8 Rel ⊆cat
4948brrelex2i 5697 . . . . . . 7 (𝐻cat 𝐽𝐽 ∈ V)
502, 49syl 17 . . . . . 6 ((𝜑𝑥𝐴) → 𝐽 ∈ V)
5146, 50exlimddv 1935 . . . . 5 (𝜑𝐽 ∈ V)
5251dmexd 7881 . . . 4 (𝜑 → dom 𝐽 ∈ V)
5352dmexd 7881 . . 3 (𝜑 → dom dom 𝐽 ∈ V)
5444, 47, 53isssc 17788 . 2 (𝜑 → (𝐾cat 𝐽 ↔ ( 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 ∧ ∀𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻(𝑧𝐾𝑤) ⊆ (𝑧𝐽𝑤))))
5512, 43, 54mpbir2and 713 1 (𝜑𝐾cat 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3916  c0 4298   ciin 4958   class class class wbr 5109  cmpt 5190   × cxp 5638  dom cdm 5640   Fn wfn 6508  cfv 6513  (class class class)co 7389  cat cssc 17775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-ixp 8873  df-ssc 17778
This theorem is referenced by:  iinfsubc  49035
  Copyright terms: Public domain W3C validator