![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pleval2i | Structured version Visualization version GIF version |
Description: One direction of pleval2 18294. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
pleval2.b | β’ π΅ = (BaseβπΎ) |
pleval2.l | β’ β€ = (leβπΎ) |
pleval2.s | β’ < = (ltβπΎ) |
Ref | Expression |
---|---|
pleval2i | β’ ((π β π΅ β§ π β π΅) β (π β€ π β (π < π β¨ π = π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6927 | . . . . . . . . 9 β’ (π β (BaseβπΎ) β πΎ β dom Base) | |
2 | pleval2.b | . . . . . . . . 9 β’ π΅ = (BaseβπΎ) | |
3 | 1, 2 | eleq2s 2849 | . . . . . . . 8 β’ (π β π΅ β πΎ β dom Base) |
4 | 3 | adantr 479 | . . . . . . 7 β’ ((π β π΅ β§ π β π΅) β πΎ β dom Base) |
5 | pleval2.l | . . . . . . . . 9 β’ β€ = (leβπΎ) | |
6 | pleval2.s | . . . . . . . . 9 β’ < = (ltβπΎ) | |
7 | 5, 6 | pltval 18289 | . . . . . . . 8 β’ ((πΎ β dom Base β§ π β π΅ β§ π β π΅) β (π < π β (π β€ π β§ π β π))) |
8 | 7 | 3expb 1118 | . . . . . . 7 β’ ((πΎ β dom Base β§ (π β π΅ β§ π β π΅)) β (π < π β (π β€ π β§ π β π))) |
9 | 4, 8 | mpancom 684 | . . . . . 6 β’ ((π β π΅ β§ π β π΅) β (π < π β (π β€ π β§ π β π))) |
10 | 9 | biimpar 476 | . . . . 5 β’ (((π β π΅ β§ π β π΅) β§ (π β€ π β§ π β π)) β π < π) |
11 | 10 | expr 455 | . . . 4 β’ (((π β π΅ β§ π β π΅) β§ π β€ π) β (π β π β π < π)) |
12 | 11 | necon1bd 2956 | . . 3 β’ (((π β π΅ β§ π β π΅) β§ π β€ π) β (Β¬ π < π β π = π)) |
13 | 12 | orrd 859 | . 2 β’ (((π β π΅ β§ π β π΅) β§ π β€ π) β (π < π β¨ π = π)) |
14 | 13 | ex 411 | 1 β’ ((π β π΅ β§ π β π΅) β (π β€ π β (π < π β¨ π = π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β¨ wo 843 = wceq 1539 β wcel 2104 β wne 2938 class class class wbr 5147 dom cdm 5675 βcfv 6542 Basecbs 17148 lecple 17208 ltcplt 18265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-plt 18287 |
This theorem is referenced by: pleval2 18294 pospo 18302 |
Copyright terms: Public domain | W3C validator |