| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pleval2i | Structured version Visualization version GIF version | ||
| Description: One direction of pleval2 18352. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| pleval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| pleval2.l | ⊢ ≤ = (le‘𝐾) |
| pleval2.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pleval2i | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6918 | . . . . . . . . 9 ⊢ (𝑋 ∈ (Base‘𝐾) → 𝐾 ∈ dom Base) | |
| 2 | pleval2.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | 1, 2 | eleq2s 2853 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → 𝐾 ∈ dom Base) |
| 4 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ dom Base) |
| 5 | pleval2.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
| 6 | pleval2.s | . . . . . . . . 9 ⊢ < = (lt‘𝐾) | |
| 7 | 5, 6 | pltval 18347 | . . . . . . . 8 ⊢ ((𝐾 ∈ dom Base ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 8 | 7 | 3expb 1120 | . . . . . . 7 ⊢ ((𝐾 ∈ dom Base ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 9 | 4, 8 | mpancom 688 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 10 | 9 | biimpar 477 | . . . . 5 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌)) → 𝑋 < 𝑌) |
| 11 | 10 | expr 456 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ≠ 𝑌 → 𝑋 < 𝑌)) |
| 12 | 11 | necon1bd 2951 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (¬ 𝑋 < 𝑌 → 𝑋 = 𝑌)) |
| 13 | 12 | orrd 863 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌)) |
| 14 | 13 | ex 412 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 Basecbs 17233 lecple 17283 ltcplt 18325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-plt 18345 |
| This theorem is referenced by: pleval2 18352 pospo 18360 |
| Copyright terms: Public domain | W3C validator |