MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pleval2i Structured version   Visualization version   GIF version

Theorem pleval2i 18406
Description: One direction of pleval2 18407. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pleval2.b 𝐵 = (Base‘𝐾)
pleval2.l = (le‘𝐾)
pleval2.s < = (lt‘𝐾)
Assertion
Ref Expression
pleval2i ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 < 𝑌𝑋 = 𝑌)))

Proof of Theorem pleval2i
StepHypRef Expression
1 elfvdm 6957 . . . . . . . . 9 (𝑋 ∈ (Base‘𝐾) → 𝐾 ∈ dom Base)
2 pleval2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
31, 2eleq2s 2862 . . . . . . . 8 (𝑋𝐵𝐾 ∈ dom Base)
43adantr 480 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → 𝐾 ∈ dom Base)
5 pleval2.l . . . . . . . . 9 = (le‘𝐾)
6 pleval2.s . . . . . . . . 9 < = (lt‘𝐾)
75, 6pltval 18402 . . . . . . . 8 ((𝐾 ∈ dom Base ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
873expb 1120 . . . . . . 7 ((𝐾 ∈ dom Base ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
94, 8mpancom 687 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
109biimpar 477 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌𝑋𝑌)) → 𝑋 < 𝑌)
1110expr 456 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋𝑌𝑋 < 𝑌))
1211necon1bd 2964 . . 3 (((𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (¬ 𝑋 < 𝑌𝑋 = 𝑌))
1312orrd 862 . 2 (((𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 < 𝑌𝑋 = 𝑌))
1413ex 412 1 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 < 𝑌𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  dom cdm 5700  cfv 6573  Basecbs 17258  lecple 17318  ltcplt 18378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-plt 18400
This theorem is referenced by:  pleval2  18407  pospo  18415
  Copyright terms: Public domain W3C validator