MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pleval2i Structured version   Visualization version   GIF version

Theorem pleval2i 18394
Description: One direction of pleval2 18395. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pleval2.b 𝐵 = (Base‘𝐾)
pleval2.l = (le‘𝐾)
pleval2.s < = (lt‘𝐾)
Assertion
Ref Expression
pleval2i ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 < 𝑌𝑋 = 𝑌)))

Proof of Theorem pleval2i
StepHypRef Expression
1 elfvdm 6944 . . . . . . . . 9 (𝑋 ∈ (Base‘𝐾) → 𝐾 ∈ dom Base)
2 pleval2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
31, 2eleq2s 2857 . . . . . . . 8 (𝑋𝐵𝐾 ∈ dom Base)
43adantr 480 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → 𝐾 ∈ dom Base)
5 pleval2.l . . . . . . . . 9 = (le‘𝐾)
6 pleval2.s . . . . . . . . 9 < = (lt‘𝐾)
75, 6pltval 18390 . . . . . . . 8 ((𝐾 ∈ dom Base ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
873expb 1119 . . . . . . 7 ((𝐾 ∈ dom Base ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
94, 8mpancom 688 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
109biimpar 477 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌𝑋𝑌)) → 𝑋 < 𝑌)
1110expr 456 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋𝑌𝑋 < 𝑌))
1211necon1bd 2956 . . 3 (((𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (¬ 𝑋 < 𝑌𝑋 = 𝑌))
1312orrd 863 . 2 (((𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 < 𝑌𝑋 = 𝑌))
1413ex 412 1 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 < 𝑌𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  dom cdm 5689  cfv 6563  Basecbs 17245  lecple 17305  ltcplt 18366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-plt 18388
This theorem is referenced by:  pleval2  18395  pospo  18403
  Copyright terms: Public domain W3C validator