Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pleval2i | Structured version Visualization version GIF version |
Description: One direction of pleval2 17646. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
pleval2.b | ⊢ 𝐵 = (Base‘𝐾) |
pleval2.l | ⊢ ≤ = (le‘𝐾) |
pleval2.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pleval2i | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6694 | . . . . . . . . 9 ⊢ (𝑋 ∈ (Base‘𝐾) → 𝐾 ∈ dom Base) | |
2 | pleval2.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
3 | 1, 2 | eleq2s 2870 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → 𝐾 ∈ dom Base) |
4 | 3 | adantr 484 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ dom Base) |
5 | pleval2.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
6 | pleval2.s | . . . . . . . . 9 ⊢ < = (lt‘𝐾) | |
7 | 5, 6 | pltval 17641 | . . . . . . . 8 ⊢ ((𝐾 ∈ dom Base ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
8 | 7 | 3expb 1117 | . . . . . . 7 ⊢ ((𝐾 ∈ dom Base ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
9 | 4, 8 | mpancom 687 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
10 | 9 | biimpar 481 | . . . . 5 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌)) → 𝑋 < 𝑌) |
11 | 10 | expr 460 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ≠ 𝑌 → 𝑋 < 𝑌)) |
12 | 11 | necon1bd 2969 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (¬ 𝑋 < 𝑌 → 𝑋 = 𝑌)) |
13 | 12 | orrd 860 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌)) |
14 | 13 | ex 416 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5035 dom cdm 5527 ‘cfv 6339 Basecbs 16546 lecple 16635 ltcplt 17622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-iota 6298 df-fun 6341 df-fv 6347 df-plt 17639 |
This theorem is referenced by: pleval2 17646 pospo 17654 |
Copyright terms: Public domain | W3C validator |