MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pleval2i Structured version   Visualization version   GIF version

Theorem pleval2i 18054
Description: One direction of pleval2 18055. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pleval2.b 𝐵 = (Base‘𝐾)
pleval2.l = (le‘𝐾)
pleval2.s < = (lt‘𝐾)
Assertion
Ref Expression
pleval2i ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 < 𝑌𝑋 = 𝑌)))

Proof of Theorem pleval2i
StepHypRef Expression
1 elfvdm 6806 . . . . . . . . 9 (𝑋 ∈ (Base‘𝐾) → 𝐾 ∈ dom Base)
2 pleval2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
31, 2eleq2s 2857 . . . . . . . 8 (𝑋𝐵𝐾 ∈ dom Base)
43adantr 481 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → 𝐾 ∈ dom Base)
5 pleval2.l . . . . . . . . 9 = (le‘𝐾)
6 pleval2.s . . . . . . . . 9 < = (lt‘𝐾)
75, 6pltval 18050 . . . . . . . 8 ((𝐾 ∈ dom Base ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
873expb 1119 . . . . . . 7 ((𝐾 ∈ dom Base ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
94, 8mpancom 685 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
109biimpar 478 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌𝑋𝑌)) → 𝑋 < 𝑌)
1110expr 457 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋𝑌𝑋 < 𝑌))
1211necon1bd 2961 . . 3 (((𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (¬ 𝑋 < 𝑌𝑋 = 𝑌))
1312orrd 860 . 2 (((𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 < 𝑌𝑋 = 𝑌))
1413ex 413 1 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 < 𝑌𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  dom cdm 5589  cfv 6433  Basecbs 16912  lecple 16969  ltcplt 18026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-plt 18048
This theorem is referenced by:  pleval2  18055  pospo  18063
  Copyright terms: Public domain W3C validator