![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pleval2i | Structured version Visualization version GIF version |
Description: One direction of pleval2 17280. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
pleval2.b | ⊢ 𝐵 = (Base‘𝐾) |
pleval2.l | ⊢ ≤ = (le‘𝐾) |
pleval2.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pleval2i | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6443 | . . . . . . . . 9 ⊢ (𝑋 ∈ (Base‘𝐾) → 𝐾 ∈ dom Base) | |
2 | pleval2.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
3 | 1, 2 | eleq2s 2896 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → 𝐾 ∈ dom Base) |
4 | 3 | adantr 473 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ dom Base) |
5 | pleval2.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
6 | pleval2.s | . . . . . . . . 9 ⊢ < = (lt‘𝐾) | |
7 | 5, 6 | pltval 17275 | . . . . . . . 8 ⊢ ((𝐾 ∈ dom Base ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
8 | 7 | 3expb 1150 | . . . . . . 7 ⊢ ((𝐾 ∈ dom Base ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
9 | 4, 8 | mpancom 680 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
10 | 9 | biimpar 470 | . . . . 5 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌)) → 𝑋 < 𝑌) |
11 | 10 | expr 449 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ≠ 𝑌 → 𝑋 < 𝑌)) |
12 | 11 | necon1bd 2989 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (¬ 𝑋 < 𝑌 → 𝑋 = 𝑌)) |
13 | 12 | orrd 890 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌)) |
14 | 13 | ex 402 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 class class class wbr 4843 dom cdm 5312 ‘cfv 6101 Basecbs 16184 lecple 16274 ltcplt 17256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fv 6109 df-plt 17273 |
This theorem is referenced by: pleval2 17280 pospo 17288 |
Copyright terms: Public domain | W3C validator |