![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pleval2i | Structured version Visualization version GIF version |
Description: One direction of pleval2 18395. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
pleval2.b | ⊢ 𝐵 = (Base‘𝐾) |
pleval2.l | ⊢ ≤ = (le‘𝐾) |
pleval2.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pleval2i | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6944 | . . . . . . . . 9 ⊢ (𝑋 ∈ (Base‘𝐾) → 𝐾 ∈ dom Base) | |
2 | pleval2.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
3 | 1, 2 | eleq2s 2857 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → 𝐾 ∈ dom Base) |
4 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ dom Base) |
5 | pleval2.l | . . . . . . . . 9 ⊢ ≤ = (le‘𝐾) | |
6 | pleval2.s | . . . . . . . . 9 ⊢ < = (lt‘𝐾) | |
7 | 5, 6 | pltval 18390 | . . . . . . . 8 ⊢ ((𝐾 ∈ dom Base ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
8 | 7 | 3expb 1119 | . . . . . . 7 ⊢ ((𝐾 ∈ dom Base ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
9 | 4, 8 | mpancom 688 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
10 | 9 | biimpar 477 | . . . . 5 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌)) → 𝑋 < 𝑌) |
11 | 10 | expr 456 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ≠ 𝑌 → 𝑋 < 𝑌)) |
12 | 11 | necon1bd 2956 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (¬ 𝑋 < 𝑌 → 𝑋 = 𝑌)) |
13 | 12 | orrd 863 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌)) |
14 | 13 | ex 412 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 dom cdm 5689 ‘cfv 6563 Basecbs 17245 lecple 17305 ltcplt 18366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-plt 18388 |
This theorem is referenced by: pleval2 18395 pospo 18403 |
Copyright terms: Public domain | W3C validator |