MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pleval2 Structured version   Visualization version   GIF version

Theorem pleval2 18241
Description: "Less than or equal to" in terms of "less than". (sspss 4049 analog.) (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pleval2.b 𝐵 = (Base‘𝐾)
pleval2.l = (le‘𝐾)
pleval2.s < = (lt‘𝐾)
Assertion
Ref Expression
pleval2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))

Proof of Theorem pleval2
StepHypRef Expression
1 pleval2.b . . . 4 𝐵 = (Base‘𝐾)
2 pleval2.l . . . 4 = (le‘𝐾)
3 pleval2.s . . . 4 < = (lt‘𝐾)
41, 2, 3pleval2i 18240 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 < 𝑌𝑋 = 𝑌)))
543adant1 1130 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 < 𝑌𝑋 = 𝑌)))
62, 3pltle 18237 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋 𝑌))
71, 2posref 18224 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
873adant3 1132 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋 𝑋)
9 breq2 5093 . . . 4 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
108, 9syl5ibcom 245 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 𝑌))
116, 10jaod 859 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌𝑋 = 𝑌) → 𝑋 𝑌))
125, 11impbid 212 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  Basecbs 17120  lecple 17168  Posetcpo 18213  ltcplt 18214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-proset 18200  df-poset 18219  df-plt 18234
This theorem is referenced by:  pltletr  18247  plelttr  18248  tosso  18323  orngsqr  20781  tlt3  32951
  Copyright terms: Public domain W3C validator