![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pleval2 | Structured version Visualization version GIF version |
Description: "Less than or equal to" in terms of "less than". (sspss 4099 analog.) (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
pleval2.b | β’ π΅ = (BaseβπΎ) |
pleval2.l | β’ β€ = (leβπΎ) |
pleval2.s | β’ < = (ltβπΎ) |
Ref | Expression |
---|---|
pleval2 | β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β (π β€ π β (π < π β¨ π = π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pleval2.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | pleval2.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | pleval2.s | . . . 4 β’ < = (ltβπΎ) | |
4 | 1, 2, 3 | pleval2i 18294 | . . 3 β’ ((π β π΅ β§ π β π΅) β (π β€ π β (π < π β¨ π = π))) |
5 | 4 | 3adant1 1129 | . 2 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β (π β€ π β (π < π β¨ π = π))) |
6 | 2, 3 | pltle 18291 | . . 3 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β (π < π β π β€ π)) |
7 | 1, 2 | posref 18276 | . . . . 5 β’ ((πΎ β Poset β§ π β π΅) β π β€ π) |
8 | 7 | 3adant3 1131 | . . . 4 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β π β€ π) |
9 | breq2 5152 | . . . 4 β’ (π = π β (π β€ π β π β€ π)) | |
10 | 8, 9 | syl5ibcom 244 | . . 3 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β (π = π β π β€ π)) |
11 | 6, 10 | jaod 856 | . 2 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β ((π < π β¨ π = π) β π β€ π)) |
12 | 5, 11 | impbid 211 | 1 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β (π β€ π β (π < π β¨ π = π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β¨ wo 844 β§ w3a 1086 = wceq 1540 β wcel 2105 class class class wbr 5148 βcfv 6543 Basecbs 17149 lecple 17209 Posetcpo 18265 ltcplt 18266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-proset 18253 df-poset 18271 df-plt 18288 |
This theorem is referenced by: pltletr 18301 plelttr 18302 tosso 18377 tlt3 32408 orngsqr 32693 |
Copyright terms: Public domain | W3C validator |