MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pleval2 Structured version   Visualization version   GIF version

Theorem pleval2 18407
Description: "Less than or equal to" in terms of "less than". (sspss 4125 analog.) (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pleval2.b 𝐵 = (Base‘𝐾)
pleval2.l = (le‘𝐾)
pleval2.s < = (lt‘𝐾)
Assertion
Ref Expression
pleval2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))

Proof of Theorem pleval2
StepHypRef Expression
1 pleval2.b . . . 4 𝐵 = (Base‘𝐾)
2 pleval2.l . . . 4 = (le‘𝐾)
3 pleval2.s . . . 4 < = (lt‘𝐾)
41, 2, 3pleval2i 18406 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 < 𝑌𝑋 = 𝑌)))
543adant1 1130 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 < 𝑌𝑋 = 𝑌)))
62, 3pltle 18403 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋 𝑌))
71, 2posref 18388 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
873adant3 1132 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋 𝑋)
9 breq2 5170 . . . 4 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
108, 9syl5ibcom 245 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 𝑌))
116, 10jaod 858 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌𝑋 = 𝑌) → 𝑋 𝑌))
125, 11impbid 212 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 846  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  Posetcpo 18377  ltcplt 18378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-proset 18365  df-poset 18383  df-plt 18400
This theorem is referenced by:  pltletr  18413  plelttr  18414  tosso  18489  tlt3  32943  orngsqr  33299
  Copyright terms: Public domain W3C validator