MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pleval2 Structured version   Visualization version   GIF version

Theorem pleval2 18351
Description: "Less than or equal to" in terms of "less than". (sspss 4082 analog.) (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pleval2.b 𝐵 = (Base‘𝐾)
pleval2.l = (le‘𝐾)
pleval2.s < = (lt‘𝐾)
Assertion
Ref Expression
pleval2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))

Proof of Theorem pleval2
StepHypRef Expression
1 pleval2.b . . . 4 𝐵 = (Base‘𝐾)
2 pleval2.l . . . 4 = (le‘𝐾)
3 pleval2.s . . . 4 < = (lt‘𝐾)
41, 2, 3pleval2i 18350 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 < 𝑌𝑋 = 𝑌)))
543adant1 1130 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 < 𝑌𝑋 = 𝑌)))
62, 3pltle 18347 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋 𝑌))
71, 2posref 18334 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
873adant3 1132 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋 𝑋)
9 breq2 5127 . . . 4 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
108, 9syl5ibcom 245 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑋 𝑌))
116, 10jaod 859 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌𝑋 = 𝑌) → 𝑋 𝑌))
125, 11impbid 212 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5123  cfv 6541  Basecbs 17229  lecple 17280  Posetcpo 18323  ltcplt 18324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-proset 18310  df-poset 18329  df-plt 18344
This theorem is referenced by:  pltletr  18357  plelttr  18358  tosso  18433  tlt3  32899  orngsqr  33274
  Copyright terms: Public domain W3C validator