![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pleval2 | Structured version Visualization version GIF version |
Description: "Less than or equal to" in terms of "less than". (sspss 4099 analog.) (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
pleval2.b | ⊢ 𝐵 = (Base‘𝐾) |
pleval2.l | ⊢ ≤ = (le‘𝐾) |
pleval2.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pleval2 | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pleval2.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pleval2.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | pleval2.s | . . . 4 ⊢ < = (lt‘𝐾) | |
4 | 1, 2, 3 | pleval2i 18335 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
5 | 4 | 3adant1 1127 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
6 | 2, 3 | pltle 18332 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
7 | 1, 2 | posref 18317 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
8 | 7 | 3adant3 1129 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
9 | breq2 5156 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) | |
10 | 8, 9 | syl5ibcom 244 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 → 𝑋 ≤ 𝑌)) |
11 | 6, 10 | jaod 857 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 < 𝑌 ∨ 𝑋 = 𝑌) → 𝑋 ≤ 𝑌)) |
12 | 5, 11 | impbid 211 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5152 ‘cfv 6553 Basecbs 17187 lecple 17247 Posetcpo 18306 ltcplt 18307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-proset 18294 df-poset 18312 df-plt 18329 |
This theorem is referenced by: pltletr 18342 plelttr 18343 tosso 18418 tlt3 32718 orngsqr 33043 |
Copyright terms: Public domain | W3C validator |