![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltnlt | Structured version Visualization version GIF version |
Description: The less-than relation implies the negation of its inverse. (Contributed by NM, 18-Oct-2011.) |
Ref | Expression |
---|---|
pltnlt.b | β’ π΅ = (BaseβπΎ) |
pltnlt.s | β’ < = (ltβπΎ) |
Ref | Expression |
---|---|
pltnlt | β’ (((πΎ β Poset β§ π β π΅ β§ π β π΅) β§ π < π) β Β¬ π < π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltnlt.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2730 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
3 | pltnlt.s | . . 3 β’ < = (ltβπΎ) | |
4 | 1, 2, 3 | pltnle 18297 | . 2 β’ (((πΎ β Poset β§ π β π΅ β§ π β π΅) β§ π < π) β Β¬ π(leβπΎ)π) |
5 | 2, 3 | pltle 18292 | . . . 4 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β (π < π β π(leβπΎ)π)) |
6 | 5 | 3com23 1124 | . . 3 β’ ((πΎ β Poset β§ π β π΅ β§ π β π΅) β (π < π β π(leβπΎ)π)) |
7 | 6 | adantr 479 | . 2 β’ (((πΎ β Poset β§ π β π΅ β§ π β π΅) β§ π < π) β (π < π β π(leβπΎ)π)) |
8 | 4, 7 | mtod 197 | 1 β’ (((πΎ β Poset β§ π β π΅ β§ π β π΅) β§ π < π) β Β¬ π < π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 class class class wbr 5149 βcfv 6544 Basecbs 17150 lecple 17210 Posetcpo 18266 ltcplt 18267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-proset 18254 df-poset 18272 df-plt 18289 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |