MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltnlt Structured version   Visualization version   GIF version

Theorem pltnlt 18410
Description: The less-than relation implies the negation of its inverse. (Contributed by NM, 18-Oct-2011.)
Hypotheses
Ref Expression
pltnlt.b 𝐵 = (Base‘𝐾)
pltnlt.s < = (lt‘𝐾)
Assertion
Ref Expression
pltnlt (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 < 𝑋)

Proof of Theorem pltnlt
StepHypRef Expression
1 pltnlt.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2740 . . 3 (le‘𝐾) = (le‘𝐾)
3 pltnlt.s . . 3 < = (lt‘𝐾)
41, 2, 3pltnle 18408 . 2 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌(le‘𝐾)𝑋)
52, 3pltle 18403 . . . 4 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑋𝐵) → (𝑌 < 𝑋𝑌(le‘𝐾)𝑋))
653com23 1126 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑌 < 𝑋𝑌(le‘𝐾)𝑋))
76adantr 480 . 2 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (𝑌 < 𝑋𝑌(le‘𝐾)𝑋))
84, 7mtod 198 1 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  Posetcpo 18377  ltcplt 18378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-proset 18365  df-poset 18383  df-plt 18400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator