| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltval3 | Structured version Visualization version GIF version | ||
| Description: Alternate expression for the "less than" relation. (dfpss3 4052 analog.) (Contributed by NM, 4-Nov-2011.) |
| Ref | Expression |
|---|---|
| pleval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| pleval2.l | ⊢ ≤ = (le‘𝐾) |
| pleval2.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltval3 | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pleval2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | pleval2.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 3 | 1, 2 | pltval 18291 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 4 | pleval2.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | 4, 1 | posref 18279 | . . . . . . . 8 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 6 | 5 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 7 | breq1 5110 | . . . . . . 7 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋)) | |
| 8 | 6, 7 | syl5ibcom 245 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 → 𝑌 ≤ 𝑋)) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 = 𝑌 → 𝑌 ≤ 𝑋)) |
| 10 | 4, 1 | posasymb 18280 | . . . . . . 7 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 11 | 10 | biimpd 229 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌)) |
| 12 | 11 | expdimp 452 | . . . . 5 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑌 ≤ 𝑋 → 𝑋 = 𝑌)) |
| 13 | 9, 12 | impbid 212 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 = 𝑌 ↔ 𝑌 ≤ 𝑋)) |
| 14 | 13 | necon3abid 2961 | . . 3 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ≠ 𝑌 ↔ ¬ 𝑌 ≤ 𝑋)) |
| 15 | 14 | pm5.32da 579 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌) ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) |
| 16 | 3, 15 | bitrd 279 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Posetcpo 18268 ltcplt 18269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-proset 18255 df-poset 18274 df-plt 18289 |
| This theorem is referenced by: tltnle 18381 opltcon3b 39197 |
| Copyright terms: Public domain | W3C validator |