MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltval3 Structured version   Visualization version   GIF version

Theorem pltval3 18057
Description: Alternate expression for the "less than" relation. (dfpss3 4021 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
pleval2.b 𝐵 = (Base‘𝐾)
pleval2.l = (le‘𝐾)
pleval2.s < = (lt‘𝐾)
Assertion
Ref Expression
pltval3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))

Proof of Theorem pltval3
StepHypRef Expression
1 pleval2.l . . 3 = (le‘𝐾)
2 pleval2.s . . 3 < = (lt‘𝐾)
31, 2pltval 18050 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
4 pleval2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
54, 1posref 18036 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
653adant3 1131 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋 𝑋)
7 breq1 5077 . . . . . . 7 (𝑋 = 𝑌 → (𝑋 𝑋𝑌 𝑋))
86, 7syl5ibcom 244 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑌 𝑋))
98adantr 481 . . . . 5 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 = 𝑌𝑌 𝑋))
104, 1posasymb 18037 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
1110biimpd 228 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌))
1211expdimp 453 . . . . 5 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑌 𝑋𝑋 = 𝑌))
139, 12impbid 211 . . . 4 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 = 𝑌𝑌 𝑋))
1413necon3abid 2980 . . 3 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋𝑌 ↔ ¬ 𝑌 𝑋))
1514pm5.32da 579 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑋𝑌) ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))
163, 15bitrd 278 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  Posetcpo 18025  ltcplt 18026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-proset 18013  df-poset 18031  df-plt 18048
This theorem is referenced by:  tltnle  18140  opltcon3b  37218
  Copyright terms: Public domain W3C validator