MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltval3 Structured version   Visualization version   GIF version

Theorem pltval3 18146
Description: Alternate expression for the "less than" relation. (dfpss3 4032 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
pleval2.b 𝐵 = (Base‘𝐾)
pleval2.l = (le‘𝐾)
pleval2.s < = (lt‘𝐾)
Assertion
Ref Expression
pltval3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))

Proof of Theorem pltval3
StepHypRef Expression
1 pleval2.l . . 3 = (le‘𝐾)
2 pleval2.s . . 3 < = (lt‘𝐾)
31, 2pltval 18139 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
4 pleval2.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
54, 1posref 18125 . . . . . . . 8 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
653adant3 1131 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋 𝑋)
7 breq1 5092 . . . . . . 7 (𝑋 = 𝑌 → (𝑋 𝑋𝑌 𝑋))
86, 7syl5ibcom 244 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌𝑌 𝑋))
98adantr 481 . . . . 5 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 = 𝑌𝑌 𝑋))
104, 1posasymb 18126 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
1110biimpd 228 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) → 𝑋 = 𝑌))
1211expdimp 453 . . . . 5 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑌 𝑋𝑋 = 𝑌))
139, 12impbid 211 . . . 4 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 = 𝑌𝑌 𝑋))
1413necon3abid 2977 . . 3 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋𝑌 ↔ ¬ 𝑌 𝑋))
1514pm5.32da 579 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑋𝑌) ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))
163, 15bitrd 278 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑌 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5089  cfv 6473  Basecbs 17001  lecple 17058  Posetcpo 18114  ltcplt 18115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3727  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6425  df-fun 6475  df-fv 6481  df-proset 18102  df-poset 18120  df-plt 18137
This theorem is referenced by:  tltnle  18229  opltcon3b  37464
  Copyright terms: Public domain W3C validator