Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pltnle | Structured version Visualization version GIF version |
Description: "Less than" implies not converse "less than or equal to". (Contributed by NM, 18-Oct-2011.) |
Ref | Expression |
---|---|
pleval2.b | ⊢ 𝐵 = (Base‘𝐾) |
pleval2.l | ⊢ ≤ = (le‘𝐾) |
pleval2.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltnle | ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pleval2.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | pleval2.s | . . . 4 ⊢ < = (lt‘𝐾) | |
3 | 1, 2 | pltval 17965 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
4 | pleval2.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 4, 1 | posasymb 17952 | . . . . . . 7 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
6 | 5 | biimpd 228 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌)) |
7 | 6 | expdimp 452 | . . . . 5 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑌 ≤ 𝑋 → 𝑋 = 𝑌)) |
8 | 7 | necon3ad 2955 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ≠ 𝑌 → ¬ 𝑌 ≤ 𝑋)) |
9 | 8 | expimpd 453 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑌 ≤ 𝑋)) |
10 | 3, 9 | sylbid 239 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋)) |
11 | 10 | imp 406 | 1 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Posetcpo 17940 ltcplt 17941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-proset 17928 df-poset 17946 df-plt 17963 |
This theorem is referenced by: pltnlt 17973 pltn2lp 17974 ncvr1 37213 cvrnle 37221 atlrelat1 37262 cvrat 37363 |
Copyright terms: Public domain | W3C validator |