| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltle | Structured version Visualization version GIF version | ||
| Description: "Less than" implies "less than or equal to". (pssss 4064 analog.) (Contributed by NM, 4-Dec-2011.) |
| Ref | Expression |
|---|---|
| pltval.l | ⊢ ≤ = (le‘𝐾) |
| pltval.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltle | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | pltval.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 3 | 1, 2 | pltval 18298 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 4 | 3 | simprbda 498 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 < 𝑌) → 𝑋 ≤ 𝑌) |
| 5 | 4 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 ‘cfv 6514 lecple 17234 ltcplt 18276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-plt 18296 |
| This theorem is referenced by: pleval2 18303 pltnlt 18306 pltn2lp 18307 plttr 18308 pospo 18311 ogrpaddlt 33038 isarchi3 33148 archirngz 33150 archiabllem2a 33155 orngsqr 33289 ornglmullt 33292 orngrmullt 33293 atnlt 39313 cvlcvr1 39339 hlrelat 39403 hlrelat3 39413 cvratlem 39422 atltcvr 39436 atlelt 39439 llnnlt 39524 lplnnle2at 39542 lplnnlt 39566 lvolnle3at 39583 lvolnltN 39619 cdlemblem 39794 cdlemb 39795 lhpexle1 40009 |
| Copyright terms: Public domain | W3C validator |