Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pltle | Structured version Visualization version GIF version |
Description: "Less than" implies "less than or equal to". (pssss 4030 analog.) (Contributed by NM, 4-Dec-2011.) |
Ref | Expression |
---|---|
pltval.l | ⊢ ≤ = (le‘𝐾) |
pltval.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltle | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | pltval.s | . . . 4 ⊢ < = (lt‘𝐾) | |
3 | 1, 2 | pltval 18050 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
4 | 3 | simprbda 499 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 < 𝑌) → 𝑋 ≤ 𝑌) |
5 | 4 | ex 413 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 lecple 16969 ltcplt 18026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-plt 18048 |
This theorem is referenced by: pleval2 18055 pltnlt 18058 pltn2lp 18059 plttr 18060 pospo 18063 ogrpaddlt 31343 isarchi3 31441 archirngz 31443 archiabllem2a 31448 orngsqr 31503 ornglmullt 31506 orngrmullt 31507 atnlt 37327 cvlcvr1 37353 hlrelat 37416 hlrelat3 37426 cvratlem 37435 atltcvr 37449 atlelt 37452 llnnlt 37537 lplnnle2at 37555 lplnnlt 37579 lvolnle3at 37596 lvolnltN 37632 cdlemblem 37807 cdlemb 37808 lhpexle1 38022 |
Copyright terms: Public domain | W3C validator |