![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltle | Structured version Visualization version GIF version |
Description: "Less than" implies "less than or equal to". (pssss 4121 analog.) (Contributed by NM, 4-Dec-2011.) |
Ref | Expression |
---|---|
pltval.l | ⊢ ≤ = (le‘𝐾) |
pltval.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltle | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | pltval.s | . . . 4 ⊢ < = (lt‘𝐾) | |
3 | 1, 2 | pltval 18402 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
4 | 3 | simprbda 498 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 < 𝑌) → 𝑋 ≤ 𝑌) |
5 | 4 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ‘cfv 6573 lecple 17318 ltcplt 18378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-plt 18400 |
This theorem is referenced by: pleval2 18407 pltnlt 18410 pltn2lp 18411 plttr 18412 pospo 18415 ogrpaddlt 33067 isarchi3 33167 archirngz 33169 archiabllem2a 33174 orngsqr 33299 ornglmullt 33302 orngrmullt 33303 atnlt 39269 cvlcvr1 39295 hlrelat 39359 hlrelat3 39369 cvratlem 39378 atltcvr 39392 atlelt 39395 llnnlt 39480 lplnnle2at 39498 lplnnlt 39522 lvolnle3at 39539 lvolnltN 39575 cdlemblem 39750 cdlemb 39751 lhpexle1 39965 |
Copyright terms: Public domain | W3C validator |