| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltle | Structured version Visualization version GIF version | ||
| Description: "Less than" implies "less than or equal to". (pssss 4061 analog.) (Contributed by NM, 4-Dec-2011.) |
| Ref | Expression |
|---|---|
| pltval.l | ⊢ ≤ = (le‘𝐾) |
| pltval.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltle | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | pltval.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 3 | 1, 2 | pltval 18291 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 4 | 3 | simprbda 498 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 < 𝑌) → 𝑋 ≤ 𝑌) |
| 5 | 4 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 lecple 17227 ltcplt 18269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-plt 18289 |
| This theorem is referenced by: pleval2 18296 pltnlt 18299 pltn2lp 18300 plttr 18301 pospo 18304 ogrpaddlt 33031 isarchi3 33141 archirngz 33143 archiabllem2a 33148 orngsqr 33282 ornglmullt 33285 orngrmullt 33286 atnlt 39306 cvlcvr1 39332 hlrelat 39396 hlrelat3 39406 cvratlem 39415 atltcvr 39429 atlelt 39432 llnnlt 39517 lplnnle2at 39535 lplnnlt 39559 lvolnle3at 39576 lvolnltN 39612 cdlemblem 39787 cdlemb 39788 lhpexle1 40002 |
| Copyright terms: Public domain | W3C validator |