Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pltle | Structured version Visualization version GIF version |
Description: "Less than" implies "less than or equal to". (pssss 4026 analog.) (Contributed by NM, 4-Dec-2011.) |
Ref | Expression |
---|---|
pltval.l | ⊢ ≤ = (le‘𝐾) |
pltval.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltle | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | pltval.s | . . . 4 ⊢ < = (lt‘𝐾) | |
3 | 1, 2 | pltval 17965 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
4 | 3 | simprbda 498 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 < 𝑌) → 𝑋 ≤ 𝑌) |
5 | 4 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 lecple 16895 ltcplt 17941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-plt 17963 |
This theorem is referenced by: pleval2 17970 pltnlt 17973 pltn2lp 17974 plttr 17975 pospo 17978 ogrpaddlt 31245 isarchi3 31343 archirngz 31345 archiabllem2a 31350 orngsqr 31405 ornglmullt 31408 orngrmullt 31409 atnlt 37254 cvlcvr1 37280 hlrelat 37343 hlrelat3 37353 cvratlem 37362 atltcvr 37376 atlelt 37379 llnnlt 37464 lplnnle2at 37482 lplnnlt 37506 lvolnle3at 37523 lvolnltN 37559 cdlemblem 37734 cdlemb 37735 lhpexle1 37949 |
Copyright terms: Public domain | W3C validator |