![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltle | Structured version Visualization version GIF version |
Description: "Less than" implies "less than or equal to". (pssss 4092 analog.) (Contributed by NM, 4-Dec-2011.) |
Ref | Expression |
---|---|
pltval.l | β’ β€ = (leβπΎ) |
pltval.s | β’ < = (ltβπΎ) |
Ref | Expression |
---|---|
pltle | β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β π β€ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltval.l | . . . 4 β’ β€ = (leβπΎ) | |
2 | pltval.s | . . . 4 β’ < = (ltβπΎ) | |
3 | 1, 2 | pltval 18323 | . . 3 β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β (π β€ π β§ π β π))) |
4 | 3 | simprbda 497 | . 2 β’ (((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β§ π < π) β π β€ π) |
5 | 4 | ex 411 | 1 β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β π β€ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 class class class wbr 5148 βcfv 6547 lecple 17239 ltcplt 18299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6499 df-fun 6549 df-fv 6555 df-plt 18321 |
This theorem is referenced by: pleval2 18328 pltnlt 18331 pltn2lp 18332 plttr 18333 pospo 18336 ogrpaddlt 32854 isarchi3 32952 archirngz 32954 archiabllem2a 32959 orngsqr 33079 ornglmullt 33082 orngrmullt 33083 atnlt 38854 cvlcvr1 38880 hlrelat 38944 hlrelat3 38954 cvratlem 38963 atltcvr 38977 atlelt 38980 llnnlt 39065 lplnnle2at 39083 lplnnlt 39107 lvolnle3at 39124 lvolnltN 39160 cdlemblem 39335 cdlemb 39336 lhpexle1 39550 |
Copyright terms: Public domain | W3C validator |