MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltle Structured version   Visualization version   GIF version

Theorem pltle 18051
Description: "Less than" implies "less than or equal to". (pssss 4030 analog.) (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
pltval.l = (le‘𝐾)
pltval.s < = (lt‘𝐾)
Assertion
Ref Expression
pltle ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌𝑋 𝑌))

Proof of Theorem pltle
StepHypRef Expression
1 pltval.l . . . 4 = (le‘𝐾)
2 pltval.s . . . 4 < = (lt‘𝐾)
31, 2pltval 18050 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
43simprbda 499 . 2 (((𝐾𝐴𝑋𝐵𝑌𝐶) ∧ 𝑋 < 𝑌) → 𝑋 𝑌)
54ex 413 1 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  lecple 16969  ltcplt 18026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-plt 18048
This theorem is referenced by:  pleval2  18055  pltnlt  18058  pltn2lp  18059  plttr  18060  pospo  18063  ogrpaddlt  31343  isarchi3  31441  archirngz  31443  archiabllem2a  31448  orngsqr  31503  ornglmullt  31506  orngrmullt  31507  atnlt  37327  cvlcvr1  37353  hlrelat  37416  hlrelat3  37426  cvratlem  37435  atltcvr  37449  atlelt  37452  llnnlt  37537  lplnnle2at  37555  lplnnlt  37579  lvolnle3at  37596  lvolnltN  37632  cdlemblem  37807  cdlemb  37808  lhpexle1  38022
  Copyright terms: Public domain W3C validator