![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltle | Structured version Visualization version GIF version |
Description: "Less than" implies "less than or equal to". (pssss 4091 analog.) (Contributed by NM, 4-Dec-2011.) |
Ref | Expression |
---|---|
pltval.l | β’ β€ = (leβπΎ) |
pltval.s | β’ < = (ltβπΎ) |
Ref | Expression |
---|---|
pltle | β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β π β€ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltval.l | . . . 4 β’ β€ = (leβπΎ) | |
2 | pltval.s | . . . 4 β’ < = (ltβπΎ) | |
3 | 1, 2 | pltval 18315 | . . 3 β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β (π β€ π β§ π β π))) |
4 | 3 | simprbda 498 | . 2 β’ (((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β§ π < π) β π β€ π) |
5 | 4 | ex 412 | 1 β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β π β€ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1534 β wcel 2099 β wne 2935 class class class wbr 5142 βcfv 6542 lecple 17231 ltcplt 18291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-plt 18313 |
This theorem is referenced by: pleval2 18320 pltnlt 18323 pltn2lp 18324 plttr 18325 pospo 18328 ogrpaddlt 32775 isarchi3 32873 archirngz 32875 archiabllem2a 32880 orngsqr 32959 ornglmullt 32962 orngrmullt 32963 atnlt 38722 cvlcvr1 38748 hlrelat 38812 hlrelat3 38822 cvratlem 38831 atltcvr 38845 atlelt 38848 llnnlt 38933 lplnnle2at 38951 lplnnlt 38975 lvolnle3at 38992 lvolnltN 39028 cdlemblem 39203 cdlemb 39204 lhpexle1 39418 |
Copyright terms: Public domain | W3C validator |