| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltle | Structured version Visualization version GIF version | ||
| Description: "Less than" implies "less than or equal to". (pssss 4073 analog.) (Contributed by NM, 4-Dec-2011.) |
| Ref | Expression |
|---|---|
| pltval.l | ⊢ ≤ = (le‘𝐾) |
| pltval.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltle | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | pltval.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 3 | 1, 2 | pltval 18342 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 4 | 3 | simprbda 498 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 < 𝑌) → 𝑋 ≤ 𝑌) |
| 5 | 4 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6531 lecple 17278 ltcplt 18320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-plt 18340 |
| This theorem is referenced by: pleval2 18347 pltnlt 18350 pltn2lp 18351 plttr 18352 pospo 18355 ogrpaddlt 33085 isarchi3 33185 archirngz 33187 archiabllem2a 33192 orngsqr 33326 ornglmullt 33329 orngrmullt 33330 atnlt 39331 cvlcvr1 39357 hlrelat 39421 hlrelat3 39431 cvratlem 39440 atltcvr 39454 atlelt 39457 llnnlt 39542 lplnnle2at 39560 lplnnlt 39584 lvolnle3at 39601 lvolnltN 39637 cdlemblem 39812 cdlemb 39813 lhpexle1 40027 |
| Copyright terms: Public domain | W3C validator |