| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltle | Structured version Visualization version GIF version | ||
| Description: "Less than" implies "less than or equal to". (pssss 4047 analog.) (Contributed by NM, 4-Dec-2011.) |
| Ref | Expression |
|---|---|
| pltval.l | ⊢ ≤ = (le‘𝐾) |
| pltval.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltle | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | pltval.s | . . . 4 ⊢ < = (lt‘𝐾) | |
| 3 | 1, 2 | pltval 18238 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 4 | 3 | simprbda 498 | . 2 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 < 𝑌) → 𝑋 ≤ 𝑌) |
| 5 | 4 | ex 412 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5093 ‘cfv 6486 lecple 17170 ltcplt 18216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-plt 18236 |
| This theorem is referenced by: pleval2 18243 pltnlt 18246 pltn2lp 18247 plttr 18248 pospo 18251 ogrpaddlt 20052 orngsqr 20783 ornglmullt 20786 orngrmullt 20787 isarchi3 33163 archirngz 33165 archiabllem2a 33170 atnlt 39432 cvlcvr1 39458 hlrelat 39521 hlrelat3 39531 cvratlem 39540 atltcvr 39554 atlelt 39557 llnnlt 39642 lplnnle2at 39660 lplnnlt 39684 lvolnle3at 39701 lvolnltN 39737 cdlemblem 39912 cdlemb 39913 lhpexle1 40127 |
| Copyright terms: Public domain | W3C validator |