![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzto1st1 | Structured version Visualization version GIF version |
Description: Special case where the permutation defined in psgnfzto1st 32003 is the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
Ref | Expression |
---|---|
psgnfzto1st.d | ⊢ 𝐷 = (1...𝑁) |
psgnfzto1st.p | ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
Ref | Expression |
---|---|
fzto1st1 | ⊢ (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . . . . 5 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ 𝑖 = 1) → 𝐼 = 1) | |
2 | simpr 486 | . . . . 5 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ 𝑖 = 1) → 𝑖 = 1) | |
3 | 1, 2 | eqtr4d 2776 | . . . 4 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ 𝑖 = 1) → 𝐼 = 𝑖) |
4 | simpr 486 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ≤ 𝐼) | |
5 | simplll 774 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝐼 = 1) | |
6 | 4, 5 | breqtrd 5132 | . . . . . . 7 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ≤ 1) |
7 | simpllr 775 | . . . . . . . . 9 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ 𝐷) | |
8 | psgnfzto1st.d | . . . . . . . . 9 ⊢ 𝐷 = (1...𝑁) | |
9 | 7, 8 | eleqtrdi 2844 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ (1...𝑁)) |
10 | elfzle1 13450 | . . . . . . . 8 ⊢ (𝑖 ∈ (1...𝑁) → 1 ≤ 𝑖) | |
11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 1 ≤ 𝑖) |
12 | fz1ssnn 13478 | . . . . . . . . . 10 ⊢ (1...𝑁) ⊆ ℕ | |
13 | 12, 9 | sselid 3943 | . . . . . . . . 9 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ ℕ) |
14 | 13 | nnred 12173 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ ℝ) |
15 | 1red 11161 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 1 ∈ ℝ) | |
16 | 14, 15 | letri3d 11302 | . . . . . . 7 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → (𝑖 = 1 ↔ (𝑖 ≤ 1 ∧ 1 ≤ 𝑖))) |
17 | 6, 11, 16 | mpbir2and 712 | . . . . . 6 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 = 1) |
18 | simplr 768 | . . . . . 6 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → ¬ 𝑖 = 1) | |
19 | 17, 18 | pm2.21dd 194 | . . . . 5 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → (𝑖 − 1) = 𝑖) |
20 | eqidd 2734 | . . . . 5 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ ¬ 𝑖 ≤ 𝐼) → 𝑖 = 𝑖) | |
21 | 19, 20 | ifeqda 4523 | . . . 4 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) → if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖) = 𝑖) |
22 | 3, 21 | ifeqda 4523 | . . 3 ⊢ ((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) → if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)) = 𝑖) |
23 | 22 | mpteq2dva 5206 | . 2 ⊢ (𝐼 = 1 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ 𝑖)) |
24 | psgnfzto1st.p | . 2 ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) | |
25 | mptresid 6005 | . 2 ⊢ ( I ↾ 𝐷) = (𝑖 ∈ 𝐷 ↦ 𝑖) | |
26 | 23, 24, 25 | 3eqtr4g 2798 | 1 ⊢ (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ifcif 4487 class class class wbr 5106 ↦ cmpt 5189 I cid 5531 ↾ cres 5636 (class class class)co 7358 1c1 11057 ≤ cle 11195 − cmin 11390 ℕcn 12158 ...cfz 13430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-z 12505 df-uz 12769 df-fz 13431 |
This theorem is referenced by: fzto1st 32001 psgnfzto1st 32003 |
Copyright terms: Public domain | W3C validator |