| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fzto1st1 | Structured version Visualization version GIF version | ||
| Description: Special case where the permutation defined in psgnfzto1st 33069 is the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
| Ref | Expression |
|---|---|
| psgnfzto1st.d | ⊢ 𝐷 = (1...𝑁) |
| psgnfzto1st.p | ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
| Ref | Expression |
|---|---|
| fzto1st1 | ⊢ (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . . 5 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ 𝑖 = 1) → 𝐼 = 1) | |
| 2 | simpr 484 | . . . . 5 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ 𝑖 = 1) → 𝑖 = 1) | |
| 3 | 1, 2 | eqtr4d 2768 | . . . 4 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ 𝑖 = 1) → 𝐼 = 𝑖) |
| 4 | simpr 484 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ≤ 𝐼) | |
| 5 | simplll 774 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝐼 = 1) | |
| 6 | 4, 5 | breqtrd 5136 | . . . . . . 7 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ≤ 1) |
| 7 | simpllr 775 | . . . . . . . . 9 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ 𝐷) | |
| 8 | psgnfzto1st.d | . . . . . . . . 9 ⊢ 𝐷 = (1...𝑁) | |
| 9 | 7, 8 | eleqtrdi 2839 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ (1...𝑁)) |
| 10 | elfzle1 13495 | . . . . . . . 8 ⊢ (𝑖 ∈ (1...𝑁) → 1 ≤ 𝑖) | |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 1 ≤ 𝑖) |
| 12 | fz1ssnn 13523 | . . . . . . . . . 10 ⊢ (1...𝑁) ⊆ ℕ | |
| 13 | 12, 9 | sselid 3947 | . . . . . . . . 9 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ ℕ) |
| 14 | 13 | nnred 12208 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ ℝ) |
| 15 | 1red 11182 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 1 ∈ ℝ) | |
| 16 | 14, 15 | letri3d 11323 | . . . . . . 7 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → (𝑖 = 1 ↔ (𝑖 ≤ 1 ∧ 1 ≤ 𝑖))) |
| 17 | 6, 11, 16 | mpbir2and 713 | . . . . . 6 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 = 1) |
| 18 | simplr 768 | . . . . . 6 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → ¬ 𝑖 = 1) | |
| 19 | 17, 18 | pm2.21dd 195 | . . . . 5 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → (𝑖 − 1) = 𝑖) |
| 20 | eqidd 2731 | . . . . 5 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ ¬ 𝑖 ≤ 𝐼) → 𝑖 = 𝑖) | |
| 21 | 19, 20 | ifeqda 4528 | . . . 4 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) → if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖) = 𝑖) |
| 22 | 3, 21 | ifeqda 4528 | . . 3 ⊢ ((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) → if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)) = 𝑖) |
| 23 | 22 | mpteq2dva 5203 | . 2 ⊢ (𝐼 = 1 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ 𝑖)) |
| 24 | psgnfzto1st.p | . 2 ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) | |
| 25 | mptresid 6025 | . 2 ⊢ ( I ↾ 𝐷) = (𝑖 ∈ 𝐷 ↦ 𝑖) | |
| 26 | 23, 24, 25 | 3eqtr4g 2790 | 1 ⊢ (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4491 class class class wbr 5110 ↦ cmpt 5191 I cid 5535 ↾ cres 5643 (class class class)co 7390 1c1 11076 ≤ cle 11216 − cmin 11412 ℕcn 12193 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: fzto1st 33067 psgnfzto1st 33069 |
| Copyright terms: Public domain | W3C validator |