Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzto1st1 Structured version   Visualization version   GIF version

Theorem fzto1st1 33071
Description: Special case where the permutation defined in psgnfzto1st 33074 is the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
psgnfzto1st.p 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
Assertion
Ref Expression
fzto1st1 (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐼   𝑖,𝑁
Allowed substitution hint:   𝑃(𝑖)

Proof of Theorem fzto1st1
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐼 = 1 ∧ 𝑖𝐷) ∧ 𝑖 = 1) → 𝐼 = 1)
2 simpr 484 . . . . 5 (((𝐼 = 1 ∧ 𝑖𝐷) ∧ 𝑖 = 1) → 𝑖 = 1)
31, 2eqtr4d 2769 . . . 4 (((𝐼 = 1 ∧ 𝑖𝐷) ∧ 𝑖 = 1) → 𝐼 = 𝑖)
4 simpr 484 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖𝐼)
5 simplll 774 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝐼 = 1)
64, 5breqtrd 5115 . . . . . . 7 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 ≤ 1)
7 simpllr 775 . . . . . . . . 9 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖𝐷)
8 psgnfzto1st.d . . . . . . . . 9 𝐷 = (1...𝑁)
97, 8eleqtrdi 2841 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 ∈ (1...𝑁))
10 elfzle1 13427 . . . . . . . 8 (𝑖 ∈ (1...𝑁) → 1 ≤ 𝑖)
119, 10syl 17 . . . . . . 7 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 1 ≤ 𝑖)
12 fz1ssnn 13455 . . . . . . . . . 10 (1...𝑁) ⊆ ℕ
1312, 9sselid 3927 . . . . . . . . 9 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 ∈ ℕ)
1413nnred 12140 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 ∈ ℝ)
15 1red 11113 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 1 ∈ ℝ)
1614, 15letri3d 11255 . . . . . . 7 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → (𝑖 = 1 ↔ (𝑖 ≤ 1 ∧ 1 ≤ 𝑖)))
176, 11, 16mpbir2and 713 . . . . . 6 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 = 1)
18 simplr 768 . . . . . 6 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → ¬ 𝑖 = 1)
1917, 18pm2.21dd 195 . . . . 5 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → (𝑖 − 1) = 𝑖)
20 eqidd 2732 . . . . 5 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ ¬ 𝑖𝐼) → 𝑖 = 𝑖)
2119, 20ifeqda 4509 . . . 4 (((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) → if(𝑖𝐼, (𝑖 − 1), 𝑖) = 𝑖)
223, 21ifeqda 4509 . . 3 ((𝐼 = 1 ∧ 𝑖𝐷) → if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)) = 𝑖)
2322mpteq2dva 5182 . 2 (𝐼 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖))) = (𝑖𝐷𝑖))
24 psgnfzto1st.p . 2 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
25 mptresid 5999 . 2 ( I ↾ 𝐷) = (𝑖𝐷𝑖)
2623, 24, 253eqtr4g 2791 1 (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  ifcif 4472   class class class wbr 5089  cmpt 5170   I cid 5508  cres 5616  (class class class)co 7346  1c1 11007  cle 11147  cmin 11344  cn 12125  ...cfz 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-z 12469  df-uz 12733  df-fz 13408
This theorem is referenced by:  fzto1st  33072  psgnfzto1st  33074
  Copyright terms: Public domain W3C validator