Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzto1st1 Structured version   Visualization version   GIF version

Theorem fzto1st1 32767
Description: Special case where the permutation defined in psgnfzto1st 32770 is the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
psgnfzto1st.p 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
Assertion
Ref Expression
fzto1st1 (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐼   𝑖,𝑁
Allowed substitution hint:   𝑃(𝑖)

Proof of Theorem fzto1st1
StepHypRef Expression
1 simpll 764 . . . . 5 (((𝐼 = 1 ∧ 𝑖𝐷) ∧ 𝑖 = 1) → 𝐼 = 1)
2 simpr 484 . . . . 5 (((𝐼 = 1 ∧ 𝑖𝐷) ∧ 𝑖 = 1) → 𝑖 = 1)
31, 2eqtr4d 2769 . . . 4 (((𝐼 = 1 ∧ 𝑖𝐷) ∧ 𝑖 = 1) → 𝐼 = 𝑖)
4 simpr 484 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖𝐼)
5 simplll 772 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝐼 = 1)
64, 5breqtrd 5167 . . . . . . 7 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 ≤ 1)
7 simpllr 773 . . . . . . . . 9 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖𝐷)
8 psgnfzto1st.d . . . . . . . . 9 𝐷 = (1...𝑁)
97, 8eleqtrdi 2837 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 ∈ (1...𝑁))
10 elfzle1 13510 . . . . . . . 8 (𝑖 ∈ (1...𝑁) → 1 ≤ 𝑖)
119, 10syl 17 . . . . . . 7 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 1 ≤ 𝑖)
12 fz1ssnn 13538 . . . . . . . . . 10 (1...𝑁) ⊆ ℕ
1312, 9sselid 3975 . . . . . . . . 9 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 ∈ ℕ)
1413nnred 12231 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 ∈ ℝ)
15 1red 11219 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 1 ∈ ℝ)
1614, 15letri3d 11360 . . . . . . 7 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → (𝑖 = 1 ↔ (𝑖 ≤ 1 ∧ 1 ≤ 𝑖)))
176, 11, 16mpbir2and 710 . . . . . 6 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 = 1)
18 simplr 766 . . . . . 6 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → ¬ 𝑖 = 1)
1917, 18pm2.21dd 194 . . . . 5 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → (𝑖 − 1) = 𝑖)
20 eqidd 2727 . . . . 5 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ ¬ 𝑖𝐼) → 𝑖 = 𝑖)
2119, 20ifeqda 4559 . . . 4 (((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) → if(𝑖𝐼, (𝑖 − 1), 𝑖) = 𝑖)
223, 21ifeqda 4559 . . 3 ((𝐼 = 1 ∧ 𝑖𝐷) → if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)) = 𝑖)
2322mpteq2dva 5241 . 2 (𝐼 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖))) = (𝑖𝐷𝑖))
24 psgnfzto1st.p . 2 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
25 mptresid 6044 . 2 ( I ↾ 𝐷) = (𝑖𝐷𝑖)
2623, 24, 253eqtr4g 2791 1 (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  ifcif 4523   class class class wbr 5141  cmpt 5224   I cid 5566  cres 5671  (class class class)co 7405  1c1 11113  cle 11253  cmin 11448  cn 12216  ...cfz 13490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-z 12563  df-uz 12827  df-fz 13491
This theorem is referenced by:  fzto1st  32768  psgnfzto1st  32770
  Copyright terms: Public domain W3C validator