![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzto1st1 | Structured version Visualization version GIF version |
Description: Special case where the permutation defined in psgnfzto1st 32251 is the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
Ref | Expression |
---|---|
psgnfzto1st.d | ⊢ 𝐷 = (1...𝑁) |
psgnfzto1st.p | ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
Ref | Expression |
---|---|
fzto1st1 | ⊢ (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 765 | . . . . 5 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ 𝑖 = 1) → 𝐼 = 1) | |
2 | simpr 485 | . . . . 5 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ 𝑖 = 1) → 𝑖 = 1) | |
3 | 1, 2 | eqtr4d 2775 | . . . 4 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ 𝑖 = 1) → 𝐼 = 𝑖) |
4 | simpr 485 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ≤ 𝐼) | |
5 | simplll 773 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝐼 = 1) | |
6 | 4, 5 | breqtrd 5173 | . . . . . . 7 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ≤ 1) |
7 | simpllr 774 | . . . . . . . . 9 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ 𝐷) | |
8 | psgnfzto1st.d | . . . . . . . . 9 ⊢ 𝐷 = (1...𝑁) | |
9 | 7, 8 | eleqtrdi 2843 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ (1...𝑁)) |
10 | elfzle1 13500 | . . . . . . . 8 ⊢ (𝑖 ∈ (1...𝑁) → 1 ≤ 𝑖) | |
11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 1 ≤ 𝑖) |
12 | fz1ssnn 13528 | . . . . . . . . . 10 ⊢ (1...𝑁) ⊆ ℕ | |
13 | 12, 9 | sselid 3979 | . . . . . . . . 9 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ ℕ) |
14 | 13 | nnred 12223 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ ℝ) |
15 | 1red 11211 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 1 ∈ ℝ) | |
16 | 14, 15 | letri3d 11352 | . . . . . . 7 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → (𝑖 = 1 ↔ (𝑖 ≤ 1 ∧ 1 ≤ 𝑖))) |
17 | 6, 11, 16 | mpbir2and 711 | . . . . . 6 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 = 1) |
18 | simplr 767 | . . . . . 6 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → ¬ 𝑖 = 1) | |
19 | 17, 18 | pm2.21dd 194 | . . . . 5 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → (𝑖 − 1) = 𝑖) |
20 | eqidd 2733 | . . . . 5 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ ¬ 𝑖 ≤ 𝐼) → 𝑖 = 𝑖) | |
21 | 19, 20 | ifeqda 4563 | . . . 4 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) → if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖) = 𝑖) |
22 | 3, 21 | ifeqda 4563 | . . 3 ⊢ ((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) → if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)) = 𝑖) |
23 | 22 | mpteq2dva 5247 | . 2 ⊢ (𝐼 = 1 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ 𝑖)) |
24 | psgnfzto1st.p | . 2 ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) | |
25 | mptresid 6048 | . 2 ⊢ ( I ↾ 𝐷) = (𝑖 ∈ 𝐷 ↦ 𝑖) | |
26 | 23, 24, 25 | 3eqtr4g 2797 | 1 ⊢ (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ifcif 4527 class class class wbr 5147 ↦ cmpt 5230 I cid 5572 ↾ cres 5677 (class class class)co 7405 1c1 11107 ≤ cle 11245 − cmin 11440 ℕcn 12208 ...cfz 13480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-z 12555 df-uz 12819 df-fz 13481 |
This theorem is referenced by: fzto1st 32249 psgnfzto1st 32251 |
Copyright terms: Public domain | W3C validator |