Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem3 Structured version   Visualization version   GIF version

Theorem bposlem3 25873
 Description: Lemma for bpos 25880. Since the binomial coefficient does not have any primes in the range (2𝑁 / 3, 𝑁] or (2𝑁, +∞) by bposlem2 25872 and prmfac1 16056, respectively, and it does not have any in the range (𝑁, 2𝑁] by hypothesis, the product of the primes up through 2𝑁 / 3 must be sufficient to compose the whole binomial coefficient. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
Assertion
Ref Expression
bposlem3 (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem bposlem3
StepHypRef Expression
1 bpos.3 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
2 simpr 488 . . . . . . . 8 ((𝜑𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
3 5nn 11715 . . . . . . . . . . . 12 5 ∈ ℕ
4 bpos.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (ℤ‘5))
5 eluznn 12310 . . . . . . . . . . . 12 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
63, 4, 5sylancr 590 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
76nnnn0d 11947 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
8 fzctr 13018 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
9 bccl2 13683 . . . . . . . . . 10 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
107, 8, 93syl 18 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
1110adantr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℕ)
122, 11pccld 16180 . . . . . . 7 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1312ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1413adantr 484 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
15 bpos.4 . . . . . . . . 9 𝐾 = (⌊‘((2 · 𝑁) / 3))
16 2nn 11702 . . . . . . . . . . . . 13 2 ∈ ℕ
17 nnmulcl 11653 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
1816, 6, 17sylancr 590 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℕ)
1918nnred 11644 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℝ)
20 3nn 11708 . . . . . . . . . . 11 3 ∈ ℕ
21 nndivre 11670 . . . . . . . . . . 11 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
2219, 20, 21sylancl 589 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
2322flcld 13167 . . . . . . . . 9 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ ℤ)
2415, 23eqeltrid 2897 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
25 3re 11709 . . . . . . . . . . . . . 14 3 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . 13 (𝜑 → 3 ∈ ℝ)
27 5re 11716 . . . . . . . . . . . . . 14 5 ∈ ℝ
2827a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℝ)
296nnred 11644 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
30 3lt5 11807 . . . . . . . . . . . . . . 15 3 < 5
3125, 27, 30ltleii 10756 . . . . . . . . . . . . . 14 3 ≤ 5
3231a1i 11 . . . . . . . . . . . . 13 (𝜑 → 3 ≤ 5)
33 eluzle 12248 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
344, 33syl 17 . . . . . . . . . . . . 13 (𝜑 → 5 ≤ 𝑁)
3526, 28, 29, 32, 34letrd 10790 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 𝑁)
36 2re 11703 . . . . . . . . . . . . . . 15 2 ∈ ℝ
37 2pos 11732 . . . . . . . . . . . . . . 15 0 < 2
3836, 37pm3.2i 474 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
39 lemul2 11486 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (3 ≤ 𝑁 ↔ (2 · 3) ≤ (2 · 𝑁)))
4025, 38, 39mp3an13 1449 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (3 ≤ 𝑁 ↔ (2 · 3) ≤ (2 · 𝑁)))
4129, 40syl 17 . . . . . . . . . . . 12 (𝜑 → (3 ≤ 𝑁 ↔ (2 · 3) ≤ (2 · 𝑁)))
4235, 41mpbid 235 . . . . . . . . . . 11 (𝜑 → (2 · 3) ≤ (2 · 𝑁))
43 3pos 11734 . . . . . . . . . . . . . 14 0 < 3
4425, 43pm3.2i 474 . . . . . . . . . . . . 13 (3 ∈ ℝ ∧ 0 < 3)
45 lemuldiv 11513 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((2 · 3) ≤ (2 · 𝑁) ↔ 2 ≤ ((2 · 𝑁) / 3)))
4636, 44, 45mp3an13 1449 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℝ → ((2 · 3) ≤ (2 · 𝑁) ↔ 2 ≤ ((2 · 𝑁) / 3)))
4719, 46syl 17 . . . . . . . . . . 11 (𝜑 → ((2 · 3) ≤ (2 · 𝑁) ↔ 2 ≤ ((2 · 𝑁) / 3)))
4842, 47mpbid 235 . . . . . . . . . 10 (𝜑 → 2 ≤ ((2 · 𝑁) / 3))
49 2z 12006 . . . . . . . . . . 11 2 ∈ ℤ
50 flge 13174 . . . . . . . . . . 11 ((((2 · 𝑁) / 3) ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ ((2 · 𝑁) / 3) ↔ 2 ≤ (⌊‘((2 · 𝑁) / 3))))
5122, 49, 50sylancl 589 . . . . . . . . . 10 (𝜑 → (2 ≤ ((2 · 𝑁) / 3) ↔ 2 ≤ (⌊‘((2 · 𝑁) / 3))))
5248, 51mpbid 235 . . . . . . . . 9 (𝜑 → 2 ≤ (⌊‘((2 · 𝑁) / 3)))
5352, 15breqtrrdi 5075 . . . . . . . 8 (𝜑 → 2 ≤ 𝐾)
5449eluz1i 12243 . . . . . . . 8 (𝐾 ∈ (ℤ‘2) ↔ (𝐾 ∈ ℤ ∧ 2 ≤ 𝐾))
5524, 53, 54sylanbrc 586 . . . . . . 7 (𝜑𝐾 ∈ (ℤ‘2))
56 eluz2nn 12276 . . . . . . 7 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
5755, 56syl 17 . . . . . 6 (𝜑𝐾 ∈ ℕ)
5857adantr 484 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝐾 ∈ ℕ)
59 simpr 488 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
60 oveq1 7146 . . . . 5 (𝑛 = 𝑝 → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
611, 14, 58, 59, 60pcmpt 16221 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0))
62 iftrue 4434 . . . . . 6 (𝑝𝐾 → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
6362adantl 485 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝐾) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
64 iffalse 4437 . . . . . . 7 𝑝𝐾 → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = 0)
6564adantl 485 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = 0)
6624zred 12079 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
67 prmz 16012 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
6867zred 12079 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
69 ltnle 10713 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝐾 < 𝑝 ↔ ¬ 𝑝𝐾))
7066, 68, 69syl2an 598 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (𝐾 < 𝑝 ↔ ¬ 𝑝𝐾))
7170biimpar 481 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → 𝐾 < 𝑝)
726ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑁 ∈ ℕ)
73 simplr 768 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝 ∈ ℙ)
7436a1i 11 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 2 ∈ ℝ)
7566ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝐾 ∈ ℝ)
7667ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝 ∈ ℤ)
7776zred 12079 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝 ∈ ℝ)
7853ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 2 ≤ 𝐾)
79 simprl 770 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝐾 < 𝑝)
8074, 75, 77, 78, 79lelttrd 10791 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 2 < 𝑝)
8115, 79eqbrtrrid 5069 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → (⌊‘((2 · 𝑁) / 3)) < 𝑝)
8222ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → ((2 · 𝑁) / 3) ∈ ℝ)
83 fllt 13175 . . . . . . . . . . . 12 ((((2 · 𝑁) / 3) ∈ ℝ ∧ 𝑝 ∈ ℤ) → (((2 · 𝑁) / 3) < 𝑝 ↔ (⌊‘((2 · 𝑁) / 3)) < 𝑝))
8482, 76, 83syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → (((2 · 𝑁) / 3) < 𝑝 ↔ (⌊‘((2 · 𝑁) / 3)) < 𝑝))
8581, 84mpbird 260 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → ((2 · 𝑁) / 3) < 𝑝)
86 simprr 772 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝𝑁)
8772, 73, 80, 85, 86bposlem2 25872 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
8887expr 460 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑝𝑁 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
89 rspe 3266 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
9089adantll 713 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
91 bpos.2 . . . . . . . . . . . . . 14 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
9291ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
9390, 92pm2.21dd 198 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
9493expr 460 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑁 < 𝑝) → (𝑝 ≤ (2 · 𝑁) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
9510nnzd 12078 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℤ)
967faccld 13644 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (!‘𝑁) ∈ ℕ)
9796, 96nnmulcld 11682 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℕ)
9897nnzd 12078 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℤ)
99 dvdsmul1 15626 . . . . . . . . . . . . . . . . . . 19 ((((2 · 𝑁)C𝑁) ∈ ℤ ∧ ((!‘𝑁) · (!‘𝑁)) ∈ ℤ) → ((2 · 𝑁)C𝑁) ∥ (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))))
10095, 98, 99syl2anc 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · 𝑁)C𝑁) ∥ (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))))
101 bcctr 25862 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
1027, 101syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
103102oveq1d 7154 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))) = (((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))) · ((!‘𝑁) · (!‘𝑁))))
10418nnnn0d 11947 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (2 · 𝑁) ∈ ℕ0)
105104faccld 13644 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (!‘(2 · 𝑁)) ∈ ℕ)
106105nncnd 11645 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (!‘(2 · 𝑁)) ∈ ℂ)
10797nncnd 11645 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℂ)
10897nnne0d 11679 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ≠ 0)
109106, 107, 108divcan1d 11410 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))) · ((!‘𝑁) · (!‘𝑁))) = (!‘(2 · 𝑁)))
110103, 109eqtrd 2836 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))) = (!‘(2 · 𝑁)))
111100, 110breqtrd 5059 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁)))
112111adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁)))
11367adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
11495adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℤ)
115105nnzd 12078 . . . . . . . . . . . . . . . . . 18 (𝜑 → (!‘(2 · 𝑁)) ∈ ℤ)
116115adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → (!‘(2 · 𝑁)) ∈ ℤ)
117 dvdstr 15641 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℤ ∧ ((2 · 𝑁)C𝑁) ∈ ℤ ∧ (!‘(2 · 𝑁)) ∈ ℤ) → ((𝑝 ∥ ((2 · 𝑁)C𝑁) ∧ ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁))) → 𝑝 ∥ (!‘(2 · 𝑁))))
118113, 114, 116, 117syl3anc 1368 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((𝑝 ∥ ((2 · 𝑁)C𝑁) ∧ ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁))) → 𝑝 ∥ (!‘(2 · 𝑁))))
119112, 118mpan2d 693 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ ((2 · 𝑁)C𝑁) → 𝑝 ∥ (!‘(2 · 𝑁))))
120 prmfac1 16056 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℕ0𝑝 ∈ ℙ ∧ 𝑝 ∥ (!‘(2 · 𝑁))) → 𝑝 ≤ (2 · 𝑁))
1211203expia 1118 . . . . . . . . . . . . . . . 16 (((2 · 𝑁) ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(2 · 𝑁)) → 𝑝 ≤ (2 · 𝑁)))
122104, 121sylan 583 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(2 · 𝑁)) → 𝑝 ≤ (2 · 𝑁)))
123119, 122syld 47 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ ((2 · 𝑁)C𝑁) → 𝑝 ≤ (2 · 𝑁)))
124123con3d 155 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑝 ≤ (2 · 𝑁) → ¬ 𝑝 ∥ ((2 · 𝑁)C𝑁)))
125 id 22 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
126 pceq0 16200 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0 ↔ ¬ 𝑝 ∥ ((2 · 𝑁)C𝑁)))
127125, 10, 126syl2anr 599 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0 ↔ ¬ 𝑝 ∥ ((2 · 𝑁)C𝑁)))
128124, 127sylibrd 262 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑝 ≤ (2 · 𝑁) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
129128adantr 484 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑁 < 𝑝) → (¬ 𝑝 ≤ (2 · 𝑁) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
13094, 129pm2.61d 182 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑁 < 𝑝) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
131130ex 416 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑁 < 𝑝 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
132131adantr 484 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑁 < 𝑝 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
133 lelttric 10740 . . . . . . . . . 10 ((𝑝 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑝𝑁𝑁 < 𝑝))
13468, 29, 133syl2anr 599 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑝𝑁𝑁 < 𝑝))
135134adantr 484 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑝𝑁𝑁 < 𝑝))
13688, 132, 135mpjaod 857 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
13771, 136syldan 594 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
13865, 137eqtr4d 2839 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
13963, 138pm2.61dan 812 . . . 4 ((𝜑𝑝 ∈ ℙ) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
14061, 139eqtrd 2836 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
141140ralrimiva 3152 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
1421, 13pcmptcl 16220 . . . . . 6 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
143142simprd 499 . . . . 5 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
144143, 57ffvelrnd 6833 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℕ)
145144nnnn0d 11947 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℕ0)
14610nnnn0d 11947 . . 3 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ0)
147 pc11 16209 . . 3 (((seq1( · , 𝐹)‘𝐾) ∈ ℕ0 ∧ ((2 · 𝑁)C𝑁) ∈ ℕ0) → ((seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁))))
148145, 146, 147syl2anc 587 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁))))
149141, 148mpbird 260 1 (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110  ifcif 4428   class class class wbr 5033   ↦ cmpt 5113  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  ℝcr 10529  0cc0 10530  1c1 10531   · cmul 10535   < clt 10668   ≤ cle 10669   / cdiv 11290  ℕcn 11629  2c2 11684  3c3 11685  5c5 11687  ℕ0cn0 11889  ℤcz 11973  ℤ≥cuz 12235  ...cfz 12889  ⌊cfl 13159  seqcseq 13368  ↑cexp 13429  !cfa 13633  Ccbc 13662   ∥ cdvds 15602  ℙcprime 16008   pCnt cpc 16166 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-dvds 15603  df-gcd 15837  df-prm 16009  df-pc 16167 This theorem is referenced by:  bposlem6  25876
 Copyright terms: Public domain W3C validator