MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem3 Structured version   Visualization version   GIF version

Theorem bposlem3 27197
Description: Lemma for bpos 27204. Since the binomial coefficient does not have any primes in the range (2𝑁 / 3, 𝑁] or (2𝑁, +∞) by bposlem2 27196 and prmfac1 16690, respectively, and it does not have any in the range (𝑁, 2𝑁] by hypothesis, the product of the primes up through 2𝑁 / 3 must be sufficient to compose the whole binomial coefficient. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
Assertion
Ref Expression
bposlem3 (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem bposlem3
StepHypRef Expression
1 bpos.3 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
2 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
3 5nn 12272 . . . . . . . . . . . 12 5 ∈ ℕ
4 bpos.1 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (ℤ‘5))
5 eluznn 12877 . . . . . . . . . . . 12 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
63, 4, 5sylancr 587 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
76nnnn0d 12503 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
8 fzctr 13601 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
9 bccl2 14288 . . . . . . . . . 10 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
107, 8, 93syl 18 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
1110adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℕ)
122, 11pccld 16821 . . . . . . 7 ((𝜑𝑛 ∈ ℙ) → (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1312ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
1413adantr 480 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ∀𝑛 ∈ ℙ (𝑛 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
15 bpos.4 . . . . . . . . 9 𝐾 = (⌊‘((2 · 𝑁) / 3))
16 2nn 12259 . . . . . . . . . . . . 13 2 ∈ ℕ
17 nnmulcl 12210 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
1816, 6, 17sylancr 587 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℕ)
1918nnred 12201 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℝ)
20 3nn 12265 . . . . . . . . . . 11 3 ∈ ℕ
21 nndivre 12227 . . . . . . . . . . 11 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
2219, 20, 21sylancl 586 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
2322flcld 13760 . . . . . . . . 9 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ ℤ)
2415, 23eqeltrid 2832 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
25 3re 12266 . . . . . . . . . . . . . 14 3 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . 13 (𝜑 → 3 ∈ ℝ)
27 5re 12273 . . . . . . . . . . . . . 14 5 ∈ ℝ
2827a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℝ)
296nnred 12201 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
30 3lt5 12359 . . . . . . . . . . . . . . 15 3 < 5
3125, 27, 30ltleii 11297 . . . . . . . . . . . . . 14 3 ≤ 5
3231a1i 11 . . . . . . . . . . . . 13 (𝜑 → 3 ≤ 5)
33 eluzle 12806 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
344, 33syl 17 . . . . . . . . . . . . 13 (𝜑 → 5 ≤ 𝑁)
3526, 28, 29, 32, 34letrd 11331 . . . . . . . . . . . 12 (𝜑 → 3 ≤ 𝑁)
36 2re 12260 . . . . . . . . . . . . . . 15 2 ∈ ℝ
37 2pos 12289 . . . . . . . . . . . . . . 15 0 < 2
3836, 37pm3.2i 470 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
39 lemul2 12035 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (3 ≤ 𝑁 ↔ (2 · 3) ≤ (2 · 𝑁)))
4025, 38, 39mp3an13 1454 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (3 ≤ 𝑁 ↔ (2 · 3) ≤ (2 · 𝑁)))
4129, 40syl 17 . . . . . . . . . . . 12 (𝜑 → (3 ≤ 𝑁 ↔ (2 · 3) ≤ (2 · 𝑁)))
4235, 41mpbid 232 . . . . . . . . . . 11 (𝜑 → (2 · 3) ≤ (2 · 𝑁))
43 3pos 12291 . . . . . . . . . . . . . 14 0 < 3
4425, 43pm3.2i 470 . . . . . . . . . . . . 13 (3 ∈ ℝ ∧ 0 < 3)
45 lemuldiv 12063 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((2 · 3) ≤ (2 · 𝑁) ↔ 2 ≤ ((2 · 𝑁) / 3)))
4636, 44, 45mp3an13 1454 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℝ → ((2 · 3) ≤ (2 · 𝑁) ↔ 2 ≤ ((2 · 𝑁) / 3)))
4719, 46syl 17 . . . . . . . . . . 11 (𝜑 → ((2 · 3) ≤ (2 · 𝑁) ↔ 2 ≤ ((2 · 𝑁) / 3)))
4842, 47mpbid 232 . . . . . . . . . 10 (𝜑 → 2 ≤ ((2 · 𝑁) / 3))
49 2z 12565 . . . . . . . . . . 11 2 ∈ ℤ
50 flge 13767 . . . . . . . . . . 11 ((((2 · 𝑁) / 3) ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ ((2 · 𝑁) / 3) ↔ 2 ≤ (⌊‘((2 · 𝑁) / 3))))
5122, 49, 50sylancl 586 . . . . . . . . . 10 (𝜑 → (2 ≤ ((2 · 𝑁) / 3) ↔ 2 ≤ (⌊‘((2 · 𝑁) / 3))))
5248, 51mpbid 232 . . . . . . . . 9 (𝜑 → 2 ≤ (⌊‘((2 · 𝑁) / 3)))
5352, 15breqtrrdi 5149 . . . . . . . 8 (𝜑 → 2 ≤ 𝐾)
5449eluz1i 12801 . . . . . . . 8 (𝐾 ∈ (ℤ‘2) ↔ (𝐾 ∈ ℤ ∧ 2 ≤ 𝐾))
5524, 53, 54sylanbrc 583 . . . . . . 7 (𝜑𝐾 ∈ (ℤ‘2))
56 eluz2nn 12847 . . . . . . 7 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
5755, 56syl 17 . . . . . 6 (𝜑𝐾 ∈ ℕ)
5857adantr 480 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝐾 ∈ ℕ)
59 simpr 484 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
60 oveq1 7394 . . . . 5 (𝑛 = 𝑝 → (𝑛 pCnt ((2 · 𝑁)C𝑁)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
611, 14, 58, 59, 60pcmpt 16863 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0))
62 iftrue 4494 . . . . . 6 (𝑝𝐾 → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
6362adantl 481 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑝𝐾) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
64 iffalse 4497 . . . . . . 7 𝑝𝐾 → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = 0)
6564adantl 481 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = 0)
6624zred 12638 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
67 prmz 16645 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
6867zred 12638 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
69 ltnle 11253 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝐾 < 𝑝 ↔ ¬ 𝑝𝐾))
7066, 68, 69syl2an 596 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (𝐾 < 𝑝 ↔ ¬ 𝑝𝐾))
7170biimpar 477 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → 𝐾 < 𝑝)
726ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑁 ∈ ℕ)
73 simplr 768 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝 ∈ ℙ)
7436a1i 11 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 2 ∈ ℝ)
7566ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝐾 ∈ ℝ)
7667ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝 ∈ ℤ)
7776zred 12638 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝 ∈ ℝ)
7853ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 2 ≤ 𝐾)
79 simprl 770 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝐾 < 𝑝)
8074, 75, 77, 78, 79lelttrd 11332 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 2 < 𝑝)
8115, 79eqbrtrrid 5143 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → (⌊‘((2 · 𝑁) / 3)) < 𝑝)
8222ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → ((2 · 𝑁) / 3) ∈ ℝ)
83 fllt 13768 . . . . . . . . . . . 12 ((((2 · 𝑁) / 3) ∈ ℝ ∧ 𝑝 ∈ ℤ) → (((2 · 𝑁) / 3) < 𝑝 ↔ (⌊‘((2 · 𝑁) / 3)) < 𝑝))
8482, 76, 83syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → (((2 · 𝑁) / 3) < 𝑝 ↔ (⌊‘((2 · 𝑁) / 3)) < 𝑝))
8581, 84mpbird 257 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → ((2 · 𝑁) / 3) < 𝑝)
86 simprr 772 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → 𝑝𝑁)
8772, 73, 80, 85, 86bposlem2 27196 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝐾 < 𝑝𝑝𝑁)) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
8887expr 456 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑝𝑁 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
89 rspe 3227 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
9089adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
91 bpos.2 . . . . . . . . . . . . . 14 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
9291ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
9390, 92pm2.21dd 195 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁))) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
9493expr 456 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑁 < 𝑝) → (𝑝 ≤ (2 · 𝑁) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
9510nnzd 12556 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℤ)
967faccld 14249 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (!‘𝑁) ∈ ℕ)
9796, 96nnmulcld 12239 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℕ)
9897nnzd 12556 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℤ)
99 dvdsmul1 16247 . . . . . . . . . . . . . . . . . . 19 ((((2 · 𝑁)C𝑁) ∈ ℤ ∧ ((!‘𝑁) · (!‘𝑁)) ∈ ℤ) → ((2 · 𝑁)C𝑁) ∥ (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))))
10095, 98, 99syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 · 𝑁)C𝑁) ∥ (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))))
101 bcctr 27186 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
1027, 101syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 𝑁)C𝑁) = ((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))))
103102oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))) = (((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))) · ((!‘𝑁) · (!‘𝑁))))
10418nnnn0d 12503 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (2 · 𝑁) ∈ ℕ0)
105104faccld 14249 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (!‘(2 · 𝑁)) ∈ ℕ)
106105nncnd 12202 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (!‘(2 · 𝑁)) ∈ ℂ)
10797nncnd 12202 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ∈ ℂ)
10897nnne0d 12236 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((!‘𝑁) · (!‘𝑁)) ≠ 0)
109106, 107, 108divcan1d 11959 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((!‘(2 · 𝑁)) / ((!‘𝑁) · (!‘𝑁))) · ((!‘𝑁) · (!‘𝑁))) = (!‘(2 · 𝑁)))
110103, 109eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((2 · 𝑁)C𝑁) · ((!‘𝑁) · (!‘𝑁))) = (!‘(2 · 𝑁)))
111100, 110breqtrd 5133 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁)))
112111adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁)))
11367adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
11495adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℤ)
115105nnzd 12556 . . . . . . . . . . . . . . . . . 18 (𝜑 → (!‘(2 · 𝑁)) ∈ ℤ)
116115adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℙ) → (!‘(2 · 𝑁)) ∈ ℤ)
117 dvdstr 16264 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℤ ∧ ((2 · 𝑁)C𝑁) ∈ ℤ ∧ (!‘(2 · 𝑁)) ∈ ℤ) → ((𝑝 ∥ ((2 · 𝑁)C𝑁) ∧ ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁))) → 𝑝 ∥ (!‘(2 · 𝑁))))
118113, 114, 116, 117syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → ((𝑝 ∥ ((2 · 𝑁)C𝑁) ∧ ((2 · 𝑁)C𝑁) ∥ (!‘(2 · 𝑁))) → 𝑝 ∥ (!‘(2 · 𝑁))))
119112, 118mpan2d 694 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ ((2 · 𝑁)C𝑁) → 𝑝 ∥ (!‘(2 · 𝑁))))
120 prmfac1 16690 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℕ0𝑝 ∈ ℙ ∧ 𝑝 ∥ (!‘(2 · 𝑁))) → 𝑝 ≤ (2 · 𝑁))
1211203expia 1121 . . . . . . . . . . . . . . . 16 (((2 · 𝑁) ∈ ℕ0𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(2 · 𝑁)) → 𝑝 ≤ (2 · 𝑁)))
122104, 121sylan 580 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (!‘(2 · 𝑁)) → 𝑝 ≤ (2 · 𝑁)))
123119, 122syld 47 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ ((2 · 𝑁)C𝑁) → 𝑝 ≤ (2 · 𝑁)))
124123con3d 152 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑝 ≤ (2 · 𝑁) → ¬ 𝑝 ∥ ((2 · 𝑁)C𝑁)))
125 id 22 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
126 pceq0 16842 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ ((2 · 𝑁)C𝑁) ∈ ℕ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0 ↔ ¬ 𝑝 ∥ ((2 · 𝑁)C𝑁)))
127125, 10, 126syl2anr 597 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → ((𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0 ↔ ¬ 𝑝 ∥ ((2 · 𝑁)C𝑁)))
128124, 127sylibrd 259 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑝 ≤ (2 · 𝑁) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
129128adantr 480 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑁 < 𝑝) → (¬ 𝑝 ≤ (2 · 𝑁) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
13094, 129pm2.61d 179 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑁 < 𝑝) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
131130ex 412 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑁 < 𝑝 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
132131adantr 480 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑁 < 𝑝 → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0))
133 lelttric 11281 . . . . . . . . . 10 ((𝑝 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑝𝑁𝑁 < 𝑝))
13468, 29, 133syl2anr 597 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑝𝑁𝑁 < 𝑝))
135134adantr 480 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑝𝑁𝑁 < 𝑝))
13688, 132, 135mpjaod 860 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝐾 < 𝑝) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
13771, 136syldan 591 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → (𝑝 pCnt ((2 · 𝑁)C𝑁)) = 0)
13865, 137eqtr4d 2767 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ ¬ 𝑝𝐾) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
13963, 138pm2.61dan 812 . . . 4 ((𝜑𝑝 ∈ ℙ) → if(𝑝𝐾, (𝑝 pCnt ((2 · 𝑁)C𝑁)), 0) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
14061, 139eqtrd 2764 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
141140ralrimiva 3125 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁)))
1421, 13pcmptcl 16862 . . . . . 6 (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
143142simprd 495 . . . . 5 (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ)
144143, 57ffvelcdmd 7057 . . . 4 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℕ)
145144nnnn0d 12503 . . 3 (𝜑 → (seq1( · , 𝐹)‘𝐾) ∈ ℕ0)
14610nnnn0d 12503 . . 3 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ0)
147 pc11 16851 . . 3 (((seq1( · , 𝐹)‘𝐾) ∈ ℕ0 ∧ ((2 · 𝑁)C𝑁) ∈ ℕ0) → ((seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁))))
148145, 146, 147syl2anc 584 . 2 (𝜑 → ((seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝐾)) = (𝑝 pCnt ((2 · 𝑁)C𝑁))))
149141, 148mpbird 257 1 (𝜑 → (seq1( · , 𝐹)‘𝐾) = ((2 · 𝑁)C𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ifcif 4488   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cle 11209   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  5c5 12244  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  cfl 13752  seqcseq 13966  cexp 14026  !cfa 14238  Ccbc 14267  cdvds 16222  cprime 16641   pCnt cpc 16807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808
This theorem is referenced by:  bposlem6  27200
  Copyright terms: Public domain W3C validator