Step | Hyp | Ref
| Expression |
1 | | cycpmco2lem.1 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ran 𝑊) |
2 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝑊) = 𝐸) → 𝐾 ∈ ran 𝑊) |
3 | | cycpmco2.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) |
4 | | cycpmco2.w |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑊 ∈ dom 𝑀) |
5 | | cycpmco2.e |
. . . . . . . . . . . . . . . . 17
⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) |
6 | | ovexd 7319 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((◡𝑊‘𝐽) + 1) ∈ V) |
7 | 5, 6 | eqeltrid 2844 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 ∈ V) |
8 | | cycpmco2.i |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) |
9 | 8 | eldifad 3900 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ∈ 𝐷) |
10 | 9 | s1cld 14317 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 〈“𝐼”〉 ∈ Word 𝐷) |
11 | | splval 14473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ 〈“𝐼”〉 ∈ Word 𝐷)) → (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) |
12 | 4, 7, 7, 10, 11 | syl13anc 1371 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) |
13 | 3, 12 | eqtrid 2791 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) |
14 | 13 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝑈) = (♯‘(((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉)))) |
15 | | ssrab2 4014 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ⊆ Word 𝐷 |
16 | | cycpmco2.d |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
17 | | cycpmco2.c |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑀 = (toCyc‘𝐷) |
18 | | cycpmco2.s |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑆 = (SymGrp‘𝐷) |
19 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Base‘𝑆) =
(Base‘𝑆) |
20 | 17, 18, 19 | tocycf 31393 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
21 | 16, 20 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
22 | 21 | fdmd 6620 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
23 | 4, 22 | eleqtrd 2842 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
24 | 15, 23 | sselid 3920 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
25 | | pfxcl 14399 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷) |
27 | | ccatcl 14286 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ 〈“𝐼”〉 ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ∈ Word 𝐷) |
28 | 26, 10, 27 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ∈ Word 𝐷) |
29 | | swrdcl 14367 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ Word 𝐷 → (𝑊 substr 〈𝐸, (♯‘𝑊)〉) ∈ Word 𝐷) |
30 | 24, 29 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑊 substr 〈𝐸, (♯‘𝑊)〉) ∈ Word 𝐷) |
31 | | ccatlen 14287 |
. . . . . . . . . . . . . 14
⊢ ((((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ∈ Word 𝐷 ∧ (𝑊 substr 〈𝐸, (♯‘𝑊)〉) ∈ Word 𝐷) → (♯‘(((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) = ((♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) + (♯‘(𝑊 substr 〈𝐸, (♯‘𝑊)〉)))) |
32 | 28, 30, 31 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘(((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) = ((♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) + (♯‘(𝑊 substr 〈𝐸, (♯‘𝑊)〉)))) |
33 | | ccatws1len 14334 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) = ((♯‘(𝑊 prefix 𝐸)) + 1)) |
34 | 26, 33 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) = ((♯‘(𝑊 prefix 𝐸)) + 1)) |
35 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) |
36 | | dmeq 5815 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊) |
37 | | eqidd 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 = 𝑊 → 𝐷 = 𝐷) |
38 | 35, 36, 37 | f1eq123d 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 = 𝑊 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
39 | 38 | elrab 3625 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷)) |
40 | 23, 39 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷)) |
41 | 40 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
42 | | f1cnv 6749 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑊:dom 𝑊–1-1→𝐷 → ◡𝑊:ran 𝑊–1-1-onto→dom
𝑊) |
43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ◡𝑊:ran 𝑊–1-1-onto→dom
𝑊) |
44 | | f1of 6725 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡𝑊:ran 𝑊–1-1-onto→dom
𝑊 → ◡𝑊:ran 𝑊⟶dom 𝑊) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ◡𝑊:ran 𝑊⟶dom 𝑊) |
46 | | cycpmco2.j |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐽 ∈ ran 𝑊) |
47 | 45, 46 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (◡𝑊‘𝐽) ∈ dom 𝑊) |
48 | | wrddm 14233 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊))) |
49 | 24, 48 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
50 | 47, 49 | eleqtrd 2842 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (◡𝑊‘𝐽) ∈ (0..^(♯‘𝑊))) |
51 | | fzofzp1 13493 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡𝑊‘𝐽) ∈ (0..^(♯‘𝑊)) → ((◡𝑊‘𝐽) + 1) ∈ (0...(♯‘𝑊))) |
52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((◡𝑊‘𝐽) + 1) ∈ (0...(♯‘𝑊))) |
53 | 5, 52 | eqeltrid 2844 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐸 ∈ (0...(♯‘𝑊))) |
54 | | pfxlen 14405 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸) |
55 | 24, 53, 54 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸) |
56 | 55 | oveq1d 7299 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1)) |
57 | 34, 56 | eqtrd 2779 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) = (𝐸 + 1)) |
58 | | lencl 14245 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈
ℕ0) |
59 | 24, 58 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (♯‘𝑊) ∈
ℕ0) |
60 | | nn0fz0 13363 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑊)
∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊))) |
61 | 59, 60 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (♯‘𝑊) ∈
(0...(♯‘𝑊))) |
62 | | swrdlen 14369 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈
(0...(♯‘𝑊)))
→ (♯‘(𝑊
substr 〈𝐸,
(♯‘𝑊)〉)) =
((♯‘𝑊) −
𝐸)) |
63 | 24, 53, 61, 62 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘(𝑊 substr 〈𝐸, (♯‘𝑊)〉)) = ((♯‘𝑊) − 𝐸)) |
64 | 57, 63 | oveq12d 7302 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) + (♯‘(𝑊 substr 〈𝐸, (♯‘𝑊)〉))) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸))) |
65 | 14, 32, 64 | 3eqtrd 2783 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑈) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸))) |
66 | | fz0ssnn0 13360 |
. . . . . . . . . . . . . . . . 17
⊢
(0...(♯‘𝑊)) ⊆
ℕ0 |
67 | 66, 53 | sselid 3920 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 ∈
ℕ0) |
68 | 67 | nn0zd 12433 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐸 ∈ ℤ) |
69 | 68 | peano2zd 12438 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸 + 1) ∈ ℤ) |
70 | 69 | zcnd 12436 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 + 1) ∈ ℂ) |
71 | 59 | nn0cnd 12304 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝑊) ∈
ℂ) |
72 | 67 | nn0cnd 12304 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈ ℂ) |
73 | 70, 71, 72 | addsubassd 11361 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸))) |
74 | | 1cnd 10979 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℂ) |
75 | 72, 74, 71 | addassd 11006 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐸 + 1) + (♯‘𝑊)) = (𝐸 + (1 + (♯‘𝑊)))) |
76 | 75 | oveq1d 7299 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸)) |
77 | 65, 73, 76 | 3eqtr2d 2785 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑈) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸)) |
78 | 74, 71 | addcld 11003 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 + (♯‘𝑊)) ∈
ℂ) |
79 | 72, 78 | pncan2d 11343 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐸 + (1 + (♯‘𝑊))) − 𝐸) = (1 + (♯‘𝑊))) |
80 | 74, 71 | addcomd 11186 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 + (♯‘𝑊)) = ((♯‘𝑊) + 1)) |
81 | 77, 79, 80 | 3eqtrd 2783 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝑈) = ((♯‘𝑊) + 1)) |
82 | | oveq1 7291 |
. . . . . . . . . 10
⊢
((♯‘𝑊) =
𝐸 →
((♯‘𝑊) + 1) =
(𝐸 + 1)) |
83 | 81, 82 | sylan9eq 2799 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (♯‘𝑊) = 𝐸) → (♯‘𝑈) = (𝐸 + 1)) |
84 | 83 | oveq1d 7299 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘𝑊) = 𝐸) → ((♯‘𝑈) − 1) = ((𝐸 + 1) − 1)) |
85 | 72, 74 | pncand 11342 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 + 1) − 1) = 𝐸) |
86 | 85 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘𝑊) = 𝐸) → ((𝐸 + 1) − 1) = 𝐸) |
87 | 84, 86 | eqtrd 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ (♯‘𝑊) = 𝐸) → ((♯‘𝑈) − 1) = 𝐸) |
88 | 87 | fveq2d 6787 |
. . . . . 6
⊢ ((𝜑 ∧ (♯‘𝑊) = 𝐸) → (𝑈‘((♯‘𝑈) − 1)) = (𝑈‘𝐸)) |
89 | | cycpmco2lem5.1 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝑈‘𝐾) = ((♯‘𝑈) − 1)) |
90 | 89 | fveq2d 6787 |
. . . . . . . 8
⊢ (𝜑 → (𝑈‘(◡𝑈‘𝐾)) = (𝑈‘((♯‘𝑈) − 1))) |
91 | 17, 18, 16, 4, 8, 46, 5, 3 | cycpmco2f1 31400 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈:dom 𝑈–1-1→𝐷) |
92 | | f1f1orn 6736 |
. . . . . . . . . . 11
⊢ (𝑈:dom 𝑈–1-1→𝐷 → 𝑈:dom 𝑈–1-1-onto→ran
𝑈) |
93 | 91, 92 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈:dom 𝑈–1-1-onto→ran
𝑈) |
94 | | ssun1 4107 |
. . . . . . . . . . . 12
⊢ ran 𝑊 ⊆ (ran 𝑊 ∪ {𝐼}) |
95 | 17, 18, 16, 4, 8, 46, 5, 3 | cycpmco2rn 31401 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼})) |
96 | 94, 95 | sseqtrrid 3975 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝑊 ⊆ ran 𝑈) |
97 | 96 | sselda 3922 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐾 ∈ ran 𝑊) → 𝐾 ∈ ran 𝑈) |
98 | | f1ocnvfv2 7158 |
. . . . . . . . . 10
⊢ ((𝑈:dom 𝑈–1-1-onto→ran
𝑈 ∧ 𝐾 ∈ ran 𝑈) → (𝑈‘(◡𝑈‘𝐾)) = 𝐾) |
99 | 93, 97, 98 | syl2an2r 682 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ran 𝑊) → (𝑈‘(◡𝑈‘𝐾)) = 𝐾) |
100 | 1, 99 | mpdan 684 |
. . . . . . . 8
⊢ (𝜑 → (𝑈‘(◡𝑈‘𝐾)) = 𝐾) |
101 | 90, 100 | eqtr3d 2781 |
. . . . . . 7
⊢ (𝜑 → (𝑈‘((♯‘𝑈) − 1)) = 𝐾) |
102 | 101 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (♯‘𝑊) = 𝐸) → (𝑈‘((♯‘𝑈) − 1)) = 𝐾) |
103 | 17, 18, 16, 4, 8, 46, 5, 3 | cycpmco2lem2 31403 |
. . . . . . 7
⊢ (𝜑 → (𝑈‘𝐸) = 𝐼) |
104 | 103 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (♯‘𝑊) = 𝐸) → (𝑈‘𝐸) = 𝐼) |
105 | 88, 102, 104 | 3eqtr3d 2787 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝑊) = 𝐸) → 𝐾 = 𝐼) |
106 | 8 | eldifbd 3901 |
. . . . . 6
⊢ (𝜑 → ¬ 𝐼 ∈ ran 𝑊) |
107 | 106 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝑊) = 𝐸) → ¬ 𝐼 ∈ ran 𝑊) |
108 | 105, 107 | eqneltrd 2859 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝑊) = 𝐸) → ¬ 𝐾 ∈ ran 𝑊) |
109 | 2, 108 | pm2.21dd 194 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝑊) = 𝐸) → ((𝑀‘𝑈)‘(𝑈‘((♯‘𝑈) − 1))) = ((𝑀‘𝑊)‘(𝑈‘((♯‘𝑈) − 1)))) |
110 | | splcl 14474 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝐷 ∧ 〈“𝐼”〉 ∈ Word 𝐷) → (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) ∈ Word 𝐷) |
111 | 24, 10, 110 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) ∈ Word 𝐷) |
112 | 3, 111 | eqeltrid 2844 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ Word 𝐷) |
113 | | nn0p1gt0 12271 |
. . . . . . . 8
⊢
((♯‘𝑊)
∈ ℕ0 → 0 < ((♯‘𝑊) + 1)) |
114 | 59, 113 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 0 <
((♯‘𝑊) +
1)) |
115 | 114, 81 | breqtrrd 5103 |
. . . . . 6
⊢ (𝜑 → 0 <
(♯‘𝑈)) |
116 | | eqidd 2740 |
. . . . . 6
⊢ (𝜑 → ((♯‘𝑈) − 1) =
((♯‘𝑈) −
1)) |
117 | 17, 16, 112, 91, 115, 116 | cycpmfv2 31390 |
. . . . 5
⊢ (𝜑 → ((𝑀‘𝑈)‘(𝑈‘((♯‘𝑈) − 1))) = (𝑈‘0)) |
118 | 117 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((𝑀‘𝑈)‘(𝑈‘((♯‘𝑈) − 1))) = (𝑈‘0)) |
119 | | f1f 6679 |
. . . . . . . . . . . 12
⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊⟶𝐷) |
120 | 41, 119 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊:dom 𝑊⟶𝐷) |
121 | 120 | frnd 6617 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝑊 ⊆ 𝐷) |
122 | 16, 121 | ssexd 5249 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝑊 ∈ V) |
123 | 46 | ne0d 4270 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝑊 ≠ ∅) |
124 | | hashgt0 14112 |
. . . . . . . . 9
⊢ ((ran
𝑊 ∈ V ∧ ran 𝑊 ≠ ∅) → 0 <
(♯‘ran 𝑊)) |
125 | 122, 123,
124 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 0 < (♯‘ran
𝑊)) |
126 | 4 | dmexd 7761 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑊 ∈ V) |
127 | | hashf1rn 14076 |
. . . . . . . . 9
⊢ ((dom
𝑊 ∈ V ∧ 𝑊:dom 𝑊–1-1→𝐷) → (♯‘𝑊) = (♯‘ran 𝑊)) |
128 | 126, 41, 127 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝑊) = (♯‘ran 𝑊)) |
129 | 125, 128 | breqtrrd 5103 |
. . . . . . 7
⊢ (𝜑 → 0 <
(♯‘𝑊)) |
130 | | eqidd 2740 |
. . . . . . 7
⊢ (𝜑 → ((♯‘𝑊) − 1) =
((♯‘𝑊) −
1)) |
131 | 17, 16, 24, 41, 129, 130 | cycpmfv2 31390 |
. . . . . 6
⊢ (𝜑 → ((𝑀‘𝑊)‘(𝑊‘((♯‘𝑊) − 1))) = (𝑊‘0)) |
132 | 131 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((𝑀‘𝑊)‘(𝑊‘((♯‘𝑊) − 1))) = (𝑊‘0)) |
133 | 3 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉)) |
134 | 17, 18, 16, 4, 8, 46, 5, 3 | cycpmco2lem3 31404 |
. . . . . . . . . 10
⊢ (𝜑 → ((♯‘𝑈) − 1) =
(♯‘𝑊)) |
135 | 72, 74 | addcomd 11186 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 + 1) = (1 + 𝐸)) |
136 | 135 | oveq2d 7300 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((♯‘𝑊) − 1) − 𝐸) + (𝐸 + 1)) = ((((♯‘𝑊) − 1) − 𝐸) + (1 + 𝐸))) |
137 | 71, 74 | subcld 11341 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝑊) − 1) ∈
ℂ) |
138 | 137, 72, 74 | nppcan3d 11368 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((♯‘𝑊) − 1) − 𝐸) + (1 + 𝐸)) = (((♯‘𝑊) − 1) + 1)) |
139 | 71, 74 | npcand 11345 |
. . . . . . . . . . 11
⊢ (𝜑 → (((♯‘𝑊) − 1) + 1) =
(♯‘𝑊)) |
140 | 136, 138,
139 | 3eqtrd 2783 |
. . . . . . . . . 10
⊢ (𝜑 → ((((♯‘𝑊) − 1) − 𝐸) + (𝐸 + 1)) = (♯‘𝑊)) |
141 | 134, 140 | eqtr4d 2782 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝑈) − 1) =
((((♯‘𝑊)
− 1) − 𝐸) +
(𝐸 + 1))) |
142 | 141 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((♯‘𝑈) − 1) = ((((♯‘𝑊) − 1) − 𝐸) + (𝐸 + 1))) |
143 | 133, 142 | fveq12d 6790 |
. . . . . . 7
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (𝑈‘((♯‘𝑈) − 1)) = ((𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉)‘((((♯‘𝑊) − 1) − 𝐸) + (𝐸 + 1)))) |
144 | 24 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 𝑊 ∈ Word 𝐷) |
145 | | nn0fz0 13363 |
. . . . . . . . . 10
⊢ (𝐸 ∈ ℕ0
↔ 𝐸 ∈ (0...𝐸)) |
146 | 67, 145 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ (0...𝐸)) |
147 | 146 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 𝐸 ∈ (0...𝐸)) |
148 | 53 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 𝐸 ∈ (0...(♯‘𝑊))) |
149 | 10 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 〈“𝐼”〉 ∈ Word 𝐷) |
150 | 71 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (♯‘𝑊) ∈ ℂ) |
151 | | 1cnd 10979 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 1 ∈ ℂ) |
152 | 72 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 𝐸 ∈ ℂ) |
153 | 150, 151,
152 | sub32d 11373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (((♯‘𝑊) − 1) − 𝐸) = (((♯‘𝑊) − 𝐸) − 1)) |
154 | | fznn0sub 13297 |
. . . . . . . . . . . . 13
⊢ (𝐸 ∈
(0...(♯‘𝑊))
→ ((♯‘𝑊)
− 𝐸) ∈
ℕ0) |
155 | 53, 154 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝑊) − 𝐸) ∈
ℕ0) |
156 | 155 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((♯‘𝑊) − 𝐸) ∈
ℕ0) |
157 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (♯‘𝑊) ≠ 𝐸) |
158 | 150, 152,
156, 157 | subne0nn 31144 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((♯‘𝑊) − 𝐸) ∈ ℕ) |
159 | | fzo0end 13488 |
. . . . . . . . . 10
⊢
(((♯‘𝑊)
− 𝐸) ∈ ℕ
→ (((♯‘𝑊)
− 𝐸) − 1)
∈ (0..^((♯‘𝑊) − 𝐸))) |
160 | 158, 159 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (((♯‘𝑊) − 𝐸) − 1) ∈
(0..^((♯‘𝑊)
− 𝐸))) |
161 | 153, 160 | eqeltrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (((♯‘𝑊) − 1) − 𝐸) ∈ (0..^((♯‘𝑊) − 𝐸))) |
162 | | s1len 14320 |
. . . . . . . . . . 11
⊢
(♯‘〈“𝐼”〉) = 1 |
163 | 162 | eqcomi 2748 |
. . . . . . . . . 10
⊢ 1 =
(♯‘〈“𝐼”〉) |
164 | 163 | oveq2i 7295 |
. . . . . . . . 9
⊢ (𝐸 + 1) = (𝐸 + (♯‘〈“𝐼”〉)) |
165 | 164 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (𝐸 + 1) = (𝐸 + (♯‘〈“𝐼”〉))) |
166 | 144, 147,
148, 149, 161, 165 | splfv3 31239 |
. . . . . . 7
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉)‘((((♯‘𝑊) − 1) − 𝐸) + (𝐸 + 1))) = (𝑊‘((((♯‘𝑊) − 1) − 𝐸) + 𝐸))) |
167 | 137, 72 | npcand 11345 |
. . . . . . . . 9
⊢ (𝜑 → ((((♯‘𝑊) − 1) − 𝐸) + 𝐸) = ((♯‘𝑊) − 1)) |
168 | 167 | fveq2d 6787 |
. . . . . . . 8
⊢ (𝜑 → (𝑊‘((((♯‘𝑊) − 1) − 𝐸) + 𝐸)) = (𝑊‘((♯‘𝑊) − 1))) |
169 | 168 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (𝑊‘((((♯‘𝑊) − 1) − 𝐸) + 𝐸)) = (𝑊‘((♯‘𝑊) − 1))) |
170 | 143, 166,
169 | 3eqtrd 2783 |
. . . . . 6
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (𝑈‘((♯‘𝑈) − 1)) = (𝑊‘((♯‘𝑊) − 1))) |
171 | 170 | fveq2d 6787 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((𝑀‘𝑊)‘(𝑈‘((♯‘𝑈) − 1))) = ((𝑀‘𝑊)‘(𝑊‘((♯‘𝑊) − 1)))) |
172 | 13 | fveq1d 6785 |
. . . . . . 7
⊢ (𝜑 → (𝑈‘0) = ((((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))‘0)) |
173 | | nn0p1nn 12281 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ ℕ0
→ (𝐸 + 1) ∈
ℕ) |
174 | 67, 173 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 + 1) ∈ ℕ) |
175 | | lbfzo0 13436 |
. . . . . . . . . . 11
⊢ (0 ∈
(0..^(𝐸 + 1)) ↔ (𝐸 + 1) ∈
ℕ) |
176 | 174, 175 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ (0..^(𝐸 + 1))) |
177 | 57 | oveq2d 7300 |
. . . . . . . . . 10
⊢ (𝜑 →
(0..^(♯‘((𝑊
prefix 𝐸) ++
〈“𝐼”〉))) = (0..^(𝐸 + 1))) |
178 | 176, 177 | eleqtrrd 2843 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
(0..^(♯‘((𝑊
prefix 𝐸) ++
〈“𝐼”〉)))) |
179 | | ccatval1 14290 |
. . . . . . . . 9
⊢ ((((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ∈ Word 𝐷 ∧ (𝑊 substr 〈𝐸, (♯‘𝑊)〉) ∈ Word 𝐷 ∧ 0 ∈ (0..^(♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)))) → ((((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))‘0) = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)‘0)) |
180 | 28, 30, 178, 179 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → ((((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))‘0) = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)‘0)) |
181 | | elfzonn0 13441 |
. . . . . . . . . . . . . 14
⊢ ((◡𝑊‘𝐽) ∈ (0..^(♯‘𝑊)) → (◡𝑊‘𝐽) ∈
ℕ0) |
182 | 50, 181 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (◡𝑊‘𝐽) ∈
ℕ0) |
183 | | nn0p1nn 12281 |
. . . . . . . . . . . . 13
⊢ ((◡𝑊‘𝐽) ∈ ℕ0 → ((◡𝑊‘𝐽) + 1) ∈ ℕ) |
184 | 182, 183 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((◡𝑊‘𝐽) + 1) ∈ ℕ) |
185 | 5, 184 | eqeltrid 2844 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ ℕ) |
186 | | lbfzo0 13436 |
. . . . . . . . . . 11
⊢ (0 ∈
(0..^𝐸) ↔ 𝐸 ∈
ℕ) |
187 | 185, 186 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ (0..^𝐸)) |
188 | 55 | oveq2d 7300 |
. . . . . . . . . 10
⊢ (𝜑 → (0..^(♯‘(𝑊 prefix 𝐸))) = (0..^𝐸)) |
189 | 187, 188 | eleqtrrd 2843 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
(0..^(♯‘(𝑊
prefix 𝐸)))) |
190 | | ccatval1 14290 |
. . . . . . . . 9
⊢ (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ 〈“𝐼”〉 ∈ Word 𝐷 ∧ 0 ∈ (0..^(♯‘(𝑊 prefix 𝐸)))) → (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)‘0) = ((𝑊 prefix 𝐸)‘0)) |
191 | 26, 10, 189, 190 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)‘0) = ((𝑊 prefix 𝐸)‘0)) |
192 | | nn0p1gt0 12271 |
. . . . . . . . . . . . . 14
⊢ ((◡𝑊‘𝐽) ∈ ℕ0 → 0 <
((◡𝑊‘𝐽) + 1)) |
193 | 182, 192 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < ((◡𝑊‘𝐽) + 1)) |
194 | 193, 5 | breqtrrdi 5117 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝐸) |
195 | 194 | gt0ne0d 11548 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ≠ 0) |
196 | | fzne1 31118 |
. . . . . . . . . . 11
⊢ ((𝐸 ∈
(0...(♯‘𝑊))
∧ 𝐸 ≠ 0) →
𝐸 ∈ ((0 +
1)...(♯‘𝑊))) |
197 | 53, 195, 196 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ ((0 + 1)...(♯‘𝑊))) |
198 | | 0p1e1 12104 |
. . . . . . . . . . 11
⊢ (0 + 1) =
1 |
199 | 198 | oveq1i 7294 |
. . . . . . . . . 10
⊢ ((0 +
1)...(♯‘𝑊)) =
(1...(♯‘𝑊)) |
200 | 197, 199 | eleqtrdi 2850 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ (1...(♯‘𝑊))) |
201 | | pfxfv0 14414 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ (1...(♯‘𝑊))) → ((𝑊 prefix 𝐸)‘0) = (𝑊‘0)) |
202 | 24, 200, 201 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((𝑊 prefix 𝐸)‘0) = (𝑊‘0)) |
203 | 180, 191,
202 | 3eqtrd 2783 |
. . . . . . 7
⊢ (𝜑 → ((((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))‘0) = (𝑊‘0)) |
204 | 172, 203 | eqtrd 2779 |
. . . . . 6
⊢ (𝜑 → (𝑈‘0) = (𝑊‘0)) |
205 | 204 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (𝑈‘0) = (𝑊‘0)) |
206 | 132, 171,
205 | 3eqtr4rd 2790 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (𝑈‘0) = ((𝑀‘𝑊)‘(𝑈‘((♯‘𝑈) − 1)))) |
207 | 118, 206 | eqtrd 2779 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((𝑀‘𝑈)‘(𝑈‘((♯‘𝑈) − 1))) = ((𝑀‘𝑊)‘(𝑈‘((♯‘𝑈) − 1)))) |
208 | 109, 207 | pm2.61dane 3033 |
. 2
⊢ (𝜑 → ((𝑀‘𝑈)‘(𝑈‘((♯‘𝑈) − 1))) = ((𝑀‘𝑊)‘(𝑈‘((♯‘𝑈) − 1)))) |
209 | 101 | fveq2d 6787 |
. 2
⊢ (𝜑 → ((𝑀‘𝑈)‘(𝑈‘((♯‘𝑈) − 1))) = ((𝑀‘𝑈)‘𝐾)) |
210 | 101 | fveq2d 6787 |
. 2
⊢ (𝜑 → ((𝑀‘𝑊)‘(𝑈‘((♯‘𝑈) − 1))) = ((𝑀‘𝑊)‘𝐾)) |
211 | 208, 209,
210 | 3eqtr3d 2787 |
1
⊢ (𝜑 → ((𝑀‘𝑈)‘𝐾) = ((𝑀‘𝑊)‘𝐾)) |