Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem5 Structured version   Visualization version   GIF version

Theorem cycpmco2lem5 33094
Description: Lemma for cycpmco2 33097. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
cycpmco2lem.1 (𝜑𝐾 ∈ ran 𝑊)
cycpmco2lem5.1 (𝜑 → (𝑈𝐾) = ((♯‘𝑈) − 1))
Assertion
Ref Expression
cycpmco2lem5 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))

Proof of Theorem cycpmco2lem5
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2lem.1 . . . . 5 (𝜑𝐾 ∈ ran 𝑊)
21adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑊) = 𝐸) → 𝐾 ∈ ran 𝑊)
3 cycpmco2.1 . . . . . . . . . . . . . . 15 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
4 cycpmco2.w . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ dom 𝑀)
5 cycpmco2.e . . . . . . . . . . . . . . . . 17 𝐸 = ((𝑊𝐽) + 1)
6 ovexd 7425 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
75, 6eqeltrid 2833 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ V)
8 cycpmco2.i . . . . . . . . . . . . . . . . . 18 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
98eldifad 3929 . . . . . . . . . . . . . . . . 17 (𝜑𝐼𝐷)
109s1cld 14575 . . . . . . . . . . . . . . . 16 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
11 splval 14723 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
124, 7, 7, 10, 11syl13anc 1374 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
133, 12eqtrid 2777 . . . . . . . . . . . . . 14 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
1413fveq2d 6865 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑈) = (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
15 ssrab2 4046 . . . . . . . . . . . . . . . . 17 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
16 cycpmco2.d . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷𝑉)
17 cycpmco2.c . . . . . . . . . . . . . . . . . . . . 21 𝑀 = (toCyc‘𝐷)
18 cycpmco2.s . . . . . . . . . . . . . . . . . . . . 21 𝑆 = (SymGrp‘𝐷)
19 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑆) = (Base‘𝑆)
2017, 18, 19tocycf 33081 . . . . . . . . . . . . . . . . . . . 20 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
2116, 20syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
2221fdmd 6701 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
234, 22eleqtrd 2831 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
2415, 23sselid 3947 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ Word 𝐷)
25 pfxcl 14649 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
2624, 25syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
27 ccatcl 14546 . . . . . . . . . . . . . . 15 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
2826, 10, 27syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
29 swrdcl 14617 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
3024, 29syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
31 ccatlen 14547 . . . . . . . . . . . . . 14 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷) → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
3228, 30, 31syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
33 ccatws1len 14592 . . . . . . . . . . . . . . . 16 ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
3426, 33syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
35 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑊𝑤 = 𝑊)
36 dmeq 5870 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
37 eqidd 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 = 𝑊𝐷 = 𝐷)
3835, 36, 37f1eq123d 6795 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
3938elrab 3662 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
4023, 39sylib 218 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
4140simprd 495 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑊:dom 𝑊1-1𝐷)
42 f1cnv 6827 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑊:ran 𝑊1-1-onto→dom 𝑊)
44 f1of 6803 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
46 cycpmco2.j . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ ran 𝑊)
4745, 46ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
48 wrddm 14493 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
4924, 48syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
5047, 49eleqtrd 2831 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
51 fzofzp1 13732 . . . . . . . . . . . . . . . . . . 19 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5250, 51syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
535, 52eqeltrid 2833 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
54 pfxlen 14655 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5524, 53, 54syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5655oveq1d 7405 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1))
5734, 56eqtrd 2765 . . . . . . . . . . . . . 14 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = (𝐸 + 1))
58 lencl 14505 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
5924, 58syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝑊) ∈ ℕ0)
60 nn0fz0 13593 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6159, 60sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
62 swrdlen 14619 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
6324, 53, 61, 62syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
6457, 63oveq12d 7408 . . . . . . . . . . . . 13 (𝜑 → ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
6514, 32, 643eqtrd 2769 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑈) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
66 fz0ssnn0 13590 . . . . . . . . . . . . . . . . 17 (0...(♯‘𝑊)) ⊆ ℕ0
6766, 53sselid 3947 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ ℕ0)
6867nn0zd 12562 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ ℤ)
6968peano2zd 12648 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 + 1) ∈ ℤ)
7069zcnd 12646 . . . . . . . . . . . . 13 (𝜑 → (𝐸 + 1) ∈ ℂ)
7159nn0cnd 12512 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝑊) ∈ ℂ)
7267nn0cnd 12512 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℂ)
7370, 71, 72addsubassd 11560 . . . . . . . . . . . 12 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
74 1cnd 11176 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
7572, 74, 71addassd 11203 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 + 1) + (♯‘𝑊)) = (𝐸 + (1 + (♯‘𝑊))))
7675oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
7765, 73, 763eqtr2d 2771 . . . . . . . . . . 11 (𝜑 → (♯‘𝑈) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
7874, 71addcld 11200 . . . . . . . . . . . 12 (𝜑 → (1 + (♯‘𝑊)) ∈ ℂ)
7972, 78pncan2d 11542 . . . . . . . . . . 11 (𝜑 → ((𝐸 + (1 + (♯‘𝑊))) − 𝐸) = (1 + (♯‘𝑊)))
8074, 71addcomd 11383 . . . . . . . . . . 11 (𝜑 → (1 + (♯‘𝑊)) = ((♯‘𝑊) + 1))
8177, 79, 803eqtrd 2769 . . . . . . . . . 10 (𝜑 → (♯‘𝑈) = ((♯‘𝑊) + 1))
82 oveq1 7397 . . . . . . . . . 10 ((♯‘𝑊) = 𝐸 → ((♯‘𝑊) + 1) = (𝐸 + 1))
8381, 82sylan9eq 2785 . . . . . . . . 9 ((𝜑 ∧ (♯‘𝑊) = 𝐸) → (♯‘𝑈) = (𝐸 + 1))
8483oveq1d 7405 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑊) = 𝐸) → ((♯‘𝑈) − 1) = ((𝐸 + 1) − 1))
8572, 74pncand 11541 . . . . . . . . 9 (𝜑 → ((𝐸 + 1) − 1) = 𝐸)
8685adantr 480 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑊) = 𝐸) → ((𝐸 + 1) − 1) = 𝐸)
8784, 86eqtrd 2765 . . . . . . 7 ((𝜑 ∧ (♯‘𝑊) = 𝐸) → ((♯‘𝑈) − 1) = 𝐸)
8887fveq2d 6865 . . . . . 6 ((𝜑 ∧ (♯‘𝑊) = 𝐸) → (𝑈‘((♯‘𝑈) − 1)) = (𝑈𝐸))
89 cycpmco2lem5.1 . . . . . . . . 9 (𝜑 → (𝑈𝐾) = ((♯‘𝑈) − 1))
9089fveq2d 6865 . . . . . . . 8 (𝜑 → (𝑈‘(𝑈𝐾)) = (𝑈‘((♯‘𝑈) − 1)))
9117, 18, 16, 4, 8, 46, 5, 3cycpmco2f1 33088 . . . . . . . . . . 11 (𝜑𝑈:dom 𝑈1-1𝐷)
92 f1f1orn 6814 . . . . . . . . . . 11 (𝑈:dom 𝑈1-1𝐷𝑈:dom 𝑈1-1-onto→ran 𝑈)
9391, 92syl 17 . . . . . . . . . 10 (𝜑𝑈:dom 𝑈1-1-onto→ran 𝑈)
94 ssun1 4144 . . . . . . . . . . . 12 ran 𝑊 ⊆ (ran 𝑊 ∪ {𝐼})
9517, 18, 16, 4, 8, 46, 5, 3cycpmco2rn 33089 . . . . . . . . . . . 12 (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))
9694, 95sseqtrrid 3993 . . . . . . . . . . 11 (𝜑 → ran 𝑊 ⊆ ran 𝑈)
9796sselda 3949 . . . . . . . . . 10 ((𝜑𝐾 ∈ ran 𝑊) → 𝐾 ∈ ran 𝑈)
98 f1ocnvfv2 7255 . . . . . . . . . 10 ((𝑈:dom 𝑈1-1-onto→ran 𝑈𝐾 ∈ ran 𝑈) → (𝑈‘(𝑈𝐾)) = 𝐾)
9993, 97, 98syl2an2r 685 . . . . . . . . 9 ((𝜑𝐾 ∈ ran 𝑊) → (𝑈‘(𝑈𝐾)) = 𝐾)
1001, 99mpdan 687 . . . . . . . 8 (𝜑 → (𝑈‘(𝑈𝐾)) = 𝐾)
10190, 100eqtr3d 2767 . . . . . . 7 (𝜑 → (𝑈‘((♯‘𝑈) − 1)) = 𝐾)
102101adantr 480 . . . . . 6 ((𝜑 ∧ (♯‘𝑊) = 𝐸) → (𝑈‘((♯‘𝑈) − 1)) = 𝐾)
10317, 18, 16, 4, 8, 46, 5, 3cycpmco2lem2 33091 . . . . . . 7 (𝜑 → (𝑈𝐸) = 𝐼)
104103adantr 480 . . . . . 6 ((𝜑 ∧ (♯‘𝑊) = 𝐸) → (𝑈𝐸) = 𝐼)
10588, 102, 1043eqtr3d 2773 . . . . 5 ((𝜑 ∧ (♯‘𝑊) = 𝐸) → 𝐾 = 𝐼)
1068eldifbd 3930 . . . . . 6 (𝜑 → ¬ 𝐼 ∈ ran 𝑊)
107106adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝑊) = 𝐸) → ¬ 𝐼 ∈ ran 𝑊)
108105, 107eqneltrd 2849 . . . 4 ((𝜑 ∧ (♯‘𝑊) = 𝐸) → ¬ 𝐾 ∈ ran 𝑊)
1092, 108pm2.21dd 195 . . 3 ((𝜑 ∧ (♯‘𝑊) = 𝐸) → ((𝑀𝑈)‘(𝑈‘((♯‘𝑈) − 1))) = ((𝑀𝑊)‘(𝑈‘((♯‘𝑈) − 1))))
110 splcl 14724 . . . . . . . 8 ((𝑊 ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
11124, 10, 110syl2anc 584 . . . . . . 7 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
1123, 111eqeltrid 2833 . . . . . 6 (𝜑𝑈 ∈ Word 𝐷)
113 nn0p1gt0 12478 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 → 0 < ((♯‘𝑊) + 1))
11459, 113syl 17 . . . . . . 7 (𝜑 → 0 < ((♯‘𝑊) + 1))
115114, 81breqtrrd 5138 . . . . . 6 (𝜑 → 0 < (♯‘𝑈))
116 eqidd 2731 . . . . . 6 (𝜑 → ((♯‘𝑈) − 1) = ((♯‘𝑈) − 1))
11717, 16, 112, 91, 115, 116cycpmfv2 33078 . . . . 5 (𝜑 → ((𝑀𝑈)‘(𝑈‘((♯‘𝑈) − 1))) = (𝑈‘0))
118117adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((𝑀𝑈)‘(𝑈‘((♯‘𝑈) − 1))) = (𝑈‘0))
119 f1f 6759 . . . . . . . . . . . 12 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊𝐷)
12041, 119syl 17 . . . . . . . . . . 11 (𝜑𝑊:dom 𝑊𝐷)
121120frnd 6699 . . . . . . . . . 10 (𝜑 → ran 𝑊𝐷)
12216, 121ssexd 5282 . . . . . . . . 9 (𝜑 → ran 𝑊 ∈ V)
12346ne0d 4308 . . . . . . . . 9 (𝜑 → ran 𝑊 ≠ ∅)
124 hashgt0 14360 . . . . . . . . 9 ((ran 𝑊 ∈ V ∧ ran 𝑊 ≠ ∅) → 0 < (♯‘ran 𝑊))
125122, 123, 124syl2anc 584 . . . . . . . 8 (𝜑 → 0 < (♯‘ran 𝑊))
1264dmexd 7882 . . . . . . . . 9 (𝜑 → dom 𝑊 ∈ V)
127 hashf1rn 14324 . . . . . . . . 9 ((dom 𝑊 ∈ V ∧ 𝑊:dom 𝑊1-1𝐷) → (♯‘𝑊) = (♯‘ran 𝑊))
128126, 41, 127syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘𝑊) = (♯‘ran 𝑊))
129125, 128breqtrrd 5138 . . . . . . 7 (𝜑 → 0 < (♯‘𝑊))
130 eqidd 2731 . . . . . . 7 (𝜑 → ((♯‘𝑊) − 1) = ((♯‘𝑊) − 1))
13117, 16, 24, 41, 129, 130cycpmfv2 33078 . . . . . 6 (𝜑 → ((𝑀𝑊)‘(𝑊‘((♯‘𝑊) − 1))) = (𝑊‘0))
132131adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((𝑀𝑊)‘(𝑊‘((♯‘𝑊) − 1))) = (𝑊‘0))
1333a1i 11 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩))
13417, 18, 16, 4, 8, 46, 5, 3cycpmco2lem3 33092 . . . . . . . . . 10 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))
13572, 74addcomd 11383 . . . . . . . . . . . 12 (𝜑 → (𝐸 + 1) = (1 + 𝐸))
136135oveq2d 7406 . . . . . . . . . . 11 (𝜑 → ((((♯‘𝑊) − 1) − 𝐸) + (𝐸 + 1)) = ((((♯‘𝑊) − 1) − 𝐸) + (1 + 𝐸)))
13771, 74subcld 11540 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) − 1) ∈ ℂ)
138137, 72, 74nppcan3d 11567 . . . . . . . . . . 11 (𝜑 → ((((♯‘𝑊) − 1) − 𝐸) + (1 + 𝐸)) = (((♯‘𝑊) − 1) + 1))
13971, 74npcand 11544 . . . . . . . . . . 11 (𝜑 → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
140136, 138, 1393eqtrd 2769 . . . . . . . . . 10 (𝜑 → ((((♯‘𝑊) − 1) − 𝐸) + (𝐸 + 1)) = (♯‘𝑊))
141134, 140eqtr4d 2768 . . . . . . . . 9 (𝜑 → ((♯‘𝑈) − 1) = ((((♯‘𝑊) − 1) − 𝐸) + (𝐸 + 1)))
142141adantr 480 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((♯‘𝑈) − 1) = ((((♯‘𝑊) − 1) − 𝐸) + (𝐸 + 1)))
143133, 142fveq12d 6868 . . . . . . 7 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (𝑈‘((♯‘𝑈) − 1)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((((♯‘𝑊) − 1) − 𝐸) + (𝐸 + 1))))
14424adantr 480 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 𝑊 ∈ Word 𝐷)
145 nn0fz0 13593 . . . . . . . . . 10 (𝐸 ∈ ℕ0𝐸 ∈ (0...𝐸))
14667, 145sylib 218 . . . . . . . . 9 (𝜑𝐸 ∈ (0...𝐸))
147146adantr 480 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 𝐸 ∈ (0...𝐸))
14853adantr 480 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 𝐸 ∈ (0...(♯‘𝑊)))
14910adantr 480 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ⟨“𝐼”⟩ ∈ Word 𝐷)
15071adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (♯‘𝑊) ∈ ℂ)
151 1cnd 11176 . . . . . . . . . 10 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 1 ∈ ℂ)
15272adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → 𝐸 ∈ ℂ)
153150, 151, 152sub32d 11572 . . . . . . . . 9 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (((♯‘𝑊) − 1) − 𝐸) = (((♯‘𝑊) − 𝐸) − 1))
154 fznn0sub 13524 . . . . . . . . . . . . 13 (𝐸 ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 𝐸) ∈ ℕ0)
15553, 154syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) − 𝐸) ∈ ℕ0)
156155adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((♯‘𝑊) − 𝐸) ∈ ℕ0)
157 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (♯‘𝑊) ≠ 𝐸)
158150, 152, 156, 157subne0nn 32753 . . . . . . . . . 10 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((♯‘𝑊) − 𝐸) ∈ ℕ)
159 fzo0end 13726 . . . . . . . . . 10 (((♯‘𝑊) − 𝐸) ∈ ℕ → (((♯‘𝑊) − 𝐸) − 1) ∈ (0..^((♯‘𝑊) − 𝐸)))
160158, 159syl 17 . . . . . . . . 9 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (((♯‘𝑊) − 𝐸) − 1) ∈ (0..^((♯‘𝑊) − 𝐸)))
161153, 160eqeltrd 2829 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (((♯‘𝑊) − 1) − 𝐸) ∈ (0..^((♯‘𝑊) − 𝐸)))
162 s1len 14578 . . . . . . . . . . 11 (♯‘⟨“𝐼”⟩) = 1
163162eqcomi 2739 . . . . . . . . . 10 1 = (♯‘⟨“𝐼”⟩)
164163oveq2i 7401 . . . . . . . . 9 (𝐸 + 1) = (𝐸 + (♯‘⟨“𝐼”⟩))
165164a1i 11 . . . . . . . 8 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (𝐸 + 1) = (𝐸 + (♯‘⟨“𝐼”⟩)))
166144, 147, 148, 149, 161, 165splfv3 32887 . . . . . . 7 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((((♯‘𝑊) − 1) − 𝐸) + (𝐸 + 1))) = (𝑊‘((((♯‘𝑊) − 1) − 𝐸) + 𝐸)))
167137, 72npcand 11544 . . . . . . . . 9 (𝜑 → ((((♯‘𝑊) − 1) − 𝐸) + 𝐸) = ((♯‘𝑊) − 1))
168167fveq2d 6865 . . . . . . . 8 (𝜑 → (𝑊‘((((♯‘𝑊) − 1) − 𝐸) + 𝐸)) = (𝑊‘((♯‘𝑊) − 1)))
169168adantr 480 . . . . . . 7 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (𝑊‘((((♯‘𝑊) − 1) − 𝐸) + 𝐸)) = (𝑊‘((♯‘𝑊) − 1)))
170143, 166, 1693eqtrd 2769 . . . . . 6 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (𝑈‘((♯‘𝑈) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
171170fveq2d 6865 . . . . 5 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((𝑀𝑊)‘(𝑈‘((♯‘𝑈) − 1))) = ((𝑀𝑊)‘(𝑊‘((♯‘𝑊) − 1))))
17213fveq1d 6863 . . . . . . 7 (𝜑 → (𝑈‘0) = ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))‘0))
173 nn0p1nn 12488 . . . . . . . . . . . 12 (𝐸 ∈ ℕ0 → (𝐸 + 1) ∈ ℕ)
17467, 173syl 17 . . . . . . . . . . 11 (𝜑 → (𝐸 + 1) ∈ ℕ)
175 lbfzo0 13667 . . . . . . . . . . 11 (0 ∈ (0..^(𝐸 + 1)) ↔ (𝐸 + 1) ∈ ℕ)
176174, 175sylibr 234 . . . . . . . . . 10 (𝜑 → 0 ∈ (0..^(𝐸 + 1)))
17757oveq2d 7406 . . . . . . . . . 10 (𝜑 → (0..^(♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩))) = (0..^(𝐸 + 1)))
178176, 177eleqtrrd 2832 . . . . . . . . 9 (𝜑 → 0 ∈ (0..^(♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩))))
179 ccatval1 14549 . . . . . . . . 9 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷 ∧ 0 ∈ (0..^(♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)))) → ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))‘0) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)‘0))
18028, 30, 178, 179syl3anc 1373 . . . . . . . 8 (𝜑 → ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))‘0) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)‘0))
181 elfzonn0 13675 . . . . . . . . . . . . . 14 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → (𝑊𝐽) ∈ ℕ0)
18250, 181syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐽) ∈ ℕ0)
183 nn0p1nn 12488 . . . . . . . . . . . . 13 ((𝑊𝐽) ∈ ℕ0 → ((𝑊𝐽) + 1) ∈ ℕ)
184182, 183syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑊𝐽) + 1) ∈ ℕ)
1855, 184eqeltrid 2833 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℕ)
186 lbfzo0 13667 . . . . . . . . . . 11 (0 ∈ (0..^𝐸) ↔ 𝐸 ∈ ℕ)
187185, 186sylibr 234 . . . . . . . . . 10 (𝜑 → 0 ∈ (0..^𝐸))
18855oveq2d 7406 . . . . . . . . . 10 (𝜑 → (0..^(♯‘(𝑊 prefix 𝐸))) = (0..^𝐸))
189187, 188eleqtrrd 2832 . . . . . . . . 9 (𝜑 → 0 ∈ (0..^(♯‘(𝑊 prefix 𝐸))))
190 ccatval1 14549 . . . . . . . . 9 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷 ∧ 0 ∈ (0..^(♯‘(𝑊 prefix 𝐸)))) → (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)‘0) = ((𝑊 prefix 𝐸)‘0))
19126, 10, 189, 190syl3anc 1373 . . . . . . . 8 (𝜑 → (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)‘0) = ((𝑊 prefix 𝐸)‘0))
192 nn0p1gt0 12478 . . . . . . . . . . . . . 14 ((𝑊𝐽) ∈ ℕ0 → 0 < ((𝑊𝐽) + 1))
193182, 192syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 < ((𝑊𝐽) + 1))
194193, 5breqtrrdi 5152 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐸)
195194gt0ne0d 11749 . . . . . . . . . . 11 (𝜑𝐸 ≠ 0)
196 fzne1 13572 . . . . . . . . . . 11 ((𝐸 ∈ (0...(♯‘𝑊)) ∧ 𝐸 ≠ 0) → 𝐸 ∈ ((0 + 1)...(♯‘𝑊)))
19753, 195, 196syl2anc 584 . . . . . . . . . 10 (𝜑𝐸 ∈ ((0 + 1)...(♯‘𝑊)))
198 0p1e1 12310 . . . . . . . . . . 11 (0 + 1) = 1
199198oveq1i 7400 . . . . . . . . . 10 ((0 + 1)...(♯‘𝑊)) = (1...(♯‘𝑊))
200197, 199eleqtrdi 2839 . . . . . . . . 9 (𝜑𝐸 ∈ (1...(♯‘𝑊)))
201 pfxfv0 14664 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ (1...(♯‘𝑊))) → ((𝑊 prefix 𝐸)‘0) = (𝑊‘0))
20224, 200, 201syl2anc 584 . . . . . . . 8 (𝜑 → ((𝑊 prefix 𝐸)‘0) = (𝑊‘0))
203180, 191, 2023eqtrd 2769 . . . . . . 7 (𝜑 → ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))‘0) = (𝑊‘0))
204172, 203eqtrd 2765 . . . . . 6 (𝜑 → (𝑈‘0) = (𝑊‘0))
205204adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (𝑈‘0) = (𝑊‘0))
206132, 171, 2053eqtr4rd 2776 . . . 4 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → (𝑈‘0) = ((𝑀𝑊)‘(𝑈‘((♯‘𝑈) − 1))))
207118, 206eqtrd 2765 . . 3 ((𝜑 ∧ (♯‘𝑊) ≠ 𝐸) → ((𝑀𝑈)‘(𝑈‘((♯‘𝑈) − 1))) = ((𝑀𝑊)‘(𝑈‘((♯‘𝑈) − 1))))
208109, 207pm2.61dane 3013 . 2 (𝜑 → ((𝑀𝑈)‘(𝑈‘((♯‘𝑈) − 1))) = ((𝑀𝑊)‘(𝑈‘((♯‘𝑈) − 1))))
209101fveq2d 6865 . 2 (𝜑 → ((𝑀𝑈)‘(𝑈‘((♯‘𝑈) − 1))) = ((𝑀𝑈)‘𝐾))
210101fveq2d 6865 . 2 (𝜑 → ((𝑀𝑊)‘(𝑈‘((♯‘𝑈) − 1))) = ((𝑀𝑊)‘𝐾))
211208, 209, 2103eqtr3d 2773 1 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  c0 4299  {csn 4592  cop 4598  cotp 4600   class class class wbr 5110  ccnv 5640  dom cdm 5641  ran crn 5642  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cmin 11412  cn 12193  0cn0 12449  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542  ⟨“cs1 14567   substr csubstr 14612   prefix cpfx 14642   splice csplice 14721  Basecbs 17186  SymGrpcsymg 19306  toCycctocyc 33070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-csh 14761  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-tset 17246  df-efmnd 18803  df-symg 19307  df-tocyc 33071
This theorem is referenced by:  cycpmco2  33097
  Copyright terms: Public domain W3C validator