![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0disj | Structured version Visualization version GIF version |
Description: The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.) |
Ref | Expression |
---|---|
nn0disj | ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel2 4225 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) | |
2 | eluzle 12916 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝑘) |
4 | eluzel2 12908 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ∈ ℤ) | |
5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℤ) |
6 | eluzelz 12913 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → 𝑘 ∈ ℤ) | |
7 | 1, 6 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ℤ) |
8 | zlem1lt 12695 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) | |
9 | 5, 7, 8 | syl2anc 583 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
10 | 3, 9 | mpbid 232 | . . . 4 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 1) < 𝑘) |
11 | elinel1 4224 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ (0...𝑁)) | |
12 | elfzle2 13588 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ≤ 𝑁) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ≤ 𝑁) |
14 | 7 | zred 12747 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ℝ) |
15 | elin 3992 | . . . . . . . . 9 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1)))) | |
16 | elfzel2 13582 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ) | |
17 | 16 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℤ) |
18 | 15, 17 | sylbi 217 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℤ) |
19 | 18 | zred 12747 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℝ) |
20 | 14, 19 | lenltd 11436 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑘 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑘)) |
21 | 18 | zcnd 12748 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℂ) |
22 | pncan1 11714 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) | |
23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁) |
24 | 23 | eqcomd 2746 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 = ((𝑁 + 1) − 1)) |
25 | 24 | breq1d 5176 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 < 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
26 | 25 | notbid 318 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (¬ 𝑁 < 𝑘 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘)) |
27 | 20, 26 | bitrd 279 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑘 ≤ 𝑁 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘)) |
28 | 13, 27 | mpbid 232 | . . . 4 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ¬ ((𝑁 + 1) − 1) < 𝑘) |
29 | 10, 28 | pm2.21dd 195 | . . 3 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ∅) |
30 | 29 | ssriv 4012 | . 2 ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ⊆ ∅ |
31 | ss0 4425 | . 2 ⊢ (((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ⊆ ∅ → ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅) | |
32 | 30, 31 | ax-mp 5 | 1 ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 − cmin 11520 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 |
This theorem is referenced by: chfacfscmulgsum 22887 chfacfpmmulgsum 22891 nnuzdisj 45270 |
Copyright terms: Public domain | W3C validator |