MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0disj Structured version   Visualization version   GIF version

Theorem nn0disj 13701
Description: The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.)
Assertion
Ref Expression
nn0disj ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅

Proof of Theorem nn0disj
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4225 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ (ℤ‘(𝑁 + 1)))
2 eluzle 12916 . . . . . 6 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘)
31, 2syl 17 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝑘)
4 eluzel2 12908 . . . . . . 7 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ∈ ℤ)
51, 4syl 17 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℤ)
6 eluzelz 12913 . . . . . . 7 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℤ)
71, 6syl 17 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℤ)
8 zlem1lt 12695 . . . . . 6 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
95, 7, 8syl2anc 583 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
103, 9mpbid 232 . . . 4 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 1) < 𝑘)
11 elinel1 4224 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ (0...𝑁))
12 elfzle2 13588 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
1311, 12syl 17 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘𝑁)
147zred 12747 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℝ)
15 elin 3992 . . . . . . . . 9 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))))
16 elfzel2 13582 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
1716adantr 480 . . . . . . . . 9 ((𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
1815, 17sylbi 217 . . . . . . . 8 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
1918zred 12747 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℝ)
2014, 19lenltd 11436 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑘𝑁 ↔ ¬ 𝑁 < 𝑘))
2118zcnd 12748 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℂ)
22 pncan1 11714 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
2321, 22syl 17 . . . . . . . . 9 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁)
2423eqcomd 2746 . . . . . . . 8 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 = ((𝑁 + 1) − 1))
2524breq1d 5176 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 < 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
2625notbid 318 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (¬ 𝑁 < 𝑘 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘))
2720, 26bitrd 279 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑘𝑁 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘))
2813, 27mpbid 232 . . . 4 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ¬ ((𝑁 + 1) − 1) < 𝑘)
2910, 28pm2.21dd 195 . . 3 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ∅)
3029ssriv 4012 . 2 ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ⊆ ∅
31 ss0 4425 . 2 (((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ⊆ ∅ → ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)
3230, 31ax-mp 5 1 ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cz 12639  cuz 12903  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  chfacfscmulgsum  22887  chfacfpmmulgsum  22891  nnuzdisj  45270
  Copyright terms: Public domain W3C validator