MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0disj Structured version   Visualization version   GIF version

Theorem nn0disj 13684
Description: The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.)
Assertion
Ref Expression
nn0disj ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅

Proof of Theorem nn0disj
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4202 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ (ℤ‘(𝑁 + 1)))
2 eluzle 12891 . . . . . 6 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘)
31, 2syl 17 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝑘)
4 eluzel2 12883 . . . . . . 7 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ∈ ℤ)
51, 4syl 17 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℤ)
6 eluzelz 12888 . . . . . . 7 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℤ)
71, 6syl 17 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℤ)
8 zlem1lt 12669 . . . . . 6 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
95, 7, 8syl2anc 584 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
103, 9mpbid 232 . . . 4 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 1) < 𝑘)
11 elinel1 4201 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ (0...𝑁))
12 elfzle2 13568 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
1311, 12syl 17 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘𝑁)
147zred 12722 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℝ)
15 elin 3967 . . . . . . . . 9 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))))
16 elfzel2 13562 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
1716adantr 480 . . . . . . . . 9 ((𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
1815, 17sylbi 217 . . . . . . . 8 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
1918zred 12722 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℝ)
2014, 19lenltd 11407 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑘𝑁 ↔ ¬ 𝑁 < 𝑘))
2118zcnd 12723 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℂ)
22 pncan1 11687 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
2321, 22syl 17 . . . . . . . . 9 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁)
2423eqcomd 2743 . . . . . . . 8 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 = ((𝑁 + 1) − 1))
2524breq1d 5153 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 < 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
2625notbid 318 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (¬ 𝑁 < 𝑘 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘))
2720, 26bitrd 279 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑘𝑁 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘))
2813, 27mpbid 232 . . . 4 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ¬ ((𝑁 + 1) − 1) < 𝑘)
2910, 28pm2.21dd 195 . . 3 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ∅)
3029ssriv 3987 . 2 ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ⊆ ∅
31 ss0 4402 . 2 (((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ⊆ ∅ → ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)
3230, 31ax-mp 5 1 ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2108  cin 3950  wss 3951  c0 4333   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cmin 11492  cz 12613  cuz 12878  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  chfacfscmulgsum  22866  chfacfpmmulgsum  22870  nnuzdisj  45366
  Copyright terms: Public domain W3C validator