Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0disj | Structured version Visualization version GIF version |
Description: The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.) |
Ref | Expression |
---|---|
nn0disj | ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel2 4136 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) | |
2 | eluzle 12637 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝑘) |
4 | eluzel2 12629 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ∈ ℤ) | |
5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℤ) |
6 | eluzelz 12634 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → 𝑘 ∈ ℤ) | |
7 | 1, 6 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ℤ) |
8 | zlem1lt 12414 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) | |
9 | 5, 7, 8 | syl2anc 585 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
10 | 3, 9 | mpbid 232 | . . . 4 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 1) < 𝑘) |
11 | elinel1 4135 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ (0...𝑁)) | |
12 | elfzle2 13302 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ≤ 𝑁) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ≤ 𝑁) |
14 | 7 | zred 12468 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ℝ) |
15 | elin 3908 | . . . . . . . . 9 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1)))) | |
16 | elfzel2 13296 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ) | |
17 | 16 | adantr 482 | . . . . . . . . 9 ⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℤ) |
18 | 15, 17 | sylbi 216 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℤ) |
19 | 18 | zred 12468 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℝ) |
20 | 14, 19 | lenltd 11163 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑘 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑘)) |
21 | 18 | zcnd 12469 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℂ) |
22 | pncan1 11441 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) | |
23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁) |
24 | 23 | eqcomd 2742 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 = ((𝑁 + 1) − 1)) |
25 | 24 | breq1d 5091 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 < 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
26 | 25 | notbid 319 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (¬ 𝑁 < 𝑘 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘)) |
27 | 20, 26 | bitrd 280 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑘 ≤ 𝑁 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘)) |
28 | 13, 27 | mpbid 232 | . . . 4 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ¬ ((𝑁 + 1) − 1) < 𝑘) |
29 | 10, 28 | pm2.21dd 194 | . . 3 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ∅) |
30 | 29 | ssriv 3930 | . 2 ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ⊆ ∅ |
31 | ss0 4338 | . 2 ⊢ (((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ⊆ ∅ → ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅) | |
32 | 30, 31 | ax-mp 5 | 1 ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 class class class wbr 5081 ‘cfv 6454 (class class class)co 7303 ℂcc 10911 0cc0 10913 1c1 10914 + caddc 10916 < clt 11051 ≤ cle 11052 − cmin 11247 ℤcz 12361 ℤ≥cuz 12624 ...cfz 13281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7616 ax-cnex 10969 ax-resscn 10970 ax-1cn 10971 ax-icn 10972 ax-addcl 10973 ax-addrcl 10974 ax-mulcl 10975 ax-mulrcl 10976 ax-mulcom 10977 ax-addass 10978 ax-mulass 10979 ax-distr 10980 ax-i2m1 10981 ax-1ne0 10982 ax-1rid 10983 ax-rnegex 10984 ax-rrecex 10985 ax-cnre 10986 ax-pre-lttri 10987 ax-pre-lttrn 10988 ax-pre-ltadd 10989 ax-pre-mulgt0 10990 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5496 df-eprel 5502 df-po 5510 df-so 5511 df-fr 5551 df-we 5553 df-xp 5602 df-rel 5603 df-cnv 5604 df-co 5605 df-dm 5606 df-rn 5607 df-res 5608 df-ima 5609 df-pred 6213 df-ord 6280 df-on 6281 df-lim 6282 df-suc 6283 df-iota 6406 df-fun 6456 df-fn 6457 df-f 6458 df-f1 6459 df-fo 6460 df-f1o 6461 df-fv 6462 df-riota 7260 df-ov 7306 df-oprab 7307 df-mpo 7308 df-om 7741 df-1st 7859 df-2nd 7860 df-frecs 8124 df-wrecs 8155 df-recs 8229 df-rdg 8268 df-er 8525 df-en 8761 df-dom 8762 df-sdom 8763 df-pnf 11053 df-mnf 11054 df-xr 11055 df-ltxr 11056 df-le 11057 df-sub 11249 df-neg 11250 df-nn 12016 df-n0 12276 df-z 12362 df-uz 12625 df-fz 13282 |
This theorem is referenced by: chfacfscmulgsum 22050 chfacfpmmulgsum 22054 nnuzdisj 42941 |
Copyright terms: Public domain | W3C validator |