MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0disj Structured version   Visualization version   GIF version

Theorem nn0disj 13621
Description: The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.)
Assertion
Ref Expression
nn0disj ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅

Proof of Theorem nn0disj
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4195 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ (ℤ‘(𝑁 + 1)))
2 eluzle 12839 . . . . . 6 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘)
31, 2syl 17 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝑘)
4 eluzel2 12831 . . . . . . 7 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ∈ ℤ)
51, 4syl 17 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℤ)
6 eluzelz 12836 . . . . . . 7 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℤ)
71, 6syl 17 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℤ)
8 zlem1lt 12618 . . . . . 6 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
95, 7, 8syl2anc 582 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
103, 9mpbid 231 . . . 4 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 1) < 𝑘)
11 elinel1 4194 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ (0...𝑁))
12 elfzle2 13509 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
1311, 12syl 17 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘𝑁)
147zred 12670 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℝ)
15 elin 3963 . . . . . . . . 9 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))))
16 elfzel2 13503 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
1716adantr 479 . . . . . . . . 9 ((𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
1815, 17sylbi 216 . . . . . . . 8 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
1918zred 12670 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℝ)
2014, 19lenltd 11364 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑘𝑁 ↔ ¬ 𝑁 < 𝑘))
2118zcnd 12671 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℂ)
22 pncan1 11642 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
2321, 22syl 17 . . . . . . . . 9 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁)
2423eqcomd 2736 . . . . . . . 8 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑁 = ((𝑁 + 1) − 1))
2524breq1d 5157 . . . . . . 7 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑁 < 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘))
2625notbid 317 . . . . . 6 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (¬ 𝑁 < 𝑘 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘))
2720, 26bitrd 278 . . . . 5 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → (𝑘𝑁 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘))
2813, 27mpbid 231 . . . 4 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → ¬ ((𝑁 + 1) − 1) < 𝑘)
2910, 28pm2.21dd 194 . . 3 (𝑘 ∈ ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ∅)
3029ssriv 3985 . 2 ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ⊆ ∅
31 ss0 4397 . 2 (((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) ⊆ ∅ → ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅)
3230, 31ax-mp 5 1 ((0...𝑁) ∩ (ℤ‘(𝑁 + 1))) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 394   = wceq 1539  wcel 2104  cin 3946  wss 3947  c0 4321   class class class wbr 5147  cfv 6542  (class class class)co 7411  cc 11110  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448  cz 12562  cuz 12826  ...cfz 13488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489
This theorem is referenced by:  chfacfscmulgsum  22582  chfacfpmmulgsum  22586  nnuzdisj  44363
  Copyright terms: Public domain W3C validator