| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0disj | Structured version Visualization version GIF version | ||
| Description: The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.) |
| Ref | Expression |
|---|---|
| nn0disj | ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 4153 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) | |
| 2 | eluzle 12748 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝑘) |
| 4 | eluzel2 12740 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ∈ ℤ) | |
| 5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℤ) |
| 6 | eluzelz 12745 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → 𝑘 ∈ ℤ) | |
| 7 | 1, 6 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ℤ) |
| 8 | zlem1lt 12527 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) | |
| 9 | 5, 7, 8 | syl2anc 584 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
| 10 | 3, 9 | mpbid 232 | . . . 4 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 1) < 𝑘) |
| 11 | elinel1 4152 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ (0...𝑁)) | |
| 12 | elfzle2 13431 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ≤ 𝑁) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ≤ 𝑁) |
| 14 | 7 | zred 12580 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ℝ) |
| 15 | elin 3919 | . . . . . . . . 9 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1)))) | |
| 16 | elfzel2 13425 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ) | |
| 17 | 16 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℤ) |
| 18 | 15, 17 | sylbi 217 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℤ) |
| 19 | 18 | zred 12580 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℝ) |
| 20 | 14, 19 | lenltd 11262 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑘 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑘)) |
| 21 | 18 | zcnd 12581 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℂ) |
| 22 | pncan1 11544 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) | |
| 23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁) |
| 24 | 23 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 = ((𝑁 + 1) − 1)) |
| 25 | 24 | breq1d 5102 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 < 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
| 26 | 25 | notbid 318 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (¬ 𝑁 < 𝑘 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘)) |
| 27 | 20, 26 | bitrd 279 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑘 ≤ 𝑁 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘)) |
| 28 | 13, 27 | mpbid 232 | . . . 4 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ¬ ((𝑁 + 1) − 1) < 𝑘) |
| 29 | 10, 28 | pm2.21dd 195 | . . 3 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ∅) |
| 30 | 29 | ssriv 3939 | . 2 ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ⊆ ∅ |
| 31 | ss0 4353 | . 2 ⊢ (((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ⊆ ∅ → ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅) | |
| 32 | 30, 31 | ax-mp 5 | 1 ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 − cmin 11347 ℤcz 12471 ℤ≥cuz 12735 ...cfz 13410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 |
| This theorem is referenced by: chfacfscmulgsum 22745 chfacfpmmulgsum 22749 nnuzdisj 45335 |
| Copyright terms: Public domain | W3C validator |