| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0disj | Structured version Visualization version GIF version | ||
| Description: The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.) |
| Ref | Expression |
|---|---|
| nn0disj | ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 4161 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) | |
| 2 | eluzle 12782 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝑘) |
| 4 | eluzel2 12774 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → (𝑁 + 1) ∈ ℤ) | |
| 5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℤ) |
| 6 | eluzelz 12779 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘(𝑁 + 1)) → 𝑘 ∈ ℤ) | |
| 7 | 1, 6 | syl 17 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ℤ) |
| 8 | zlem1lt 12561 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) | |
| 9 | 5, 7, 8 | syl2anc 584 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) ≤ 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
| 10 | 3, 9 | mpbid 232 | . . . 4 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 1) < 𝑘) |
| 11 | elinel1 4160 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ (0...𝑁)) | |
| 12 | elfzle2 13465 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ≤ 𝑁) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ≤ 𝑁) |
| 14 | 7 | zred 12614 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ℝ) |
| 15 | elin 3927 | . . . . . . . . 9 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ↔ (𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1)))) | |
| 16 | elfzel2 13459 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ) | |
| 17 | 16 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℤ) |
| 18 | 15, 17 | sylbi 217 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℤ) |
| 19 | 18 | zred 12614 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℝ) |
| 20 | 14, 19 | lenltd 11296 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑘 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑘)) |
| 21 | 18 | zcnd 12615 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ ℂ) |
| 22 | pncan1 11578 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) | |
| 23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ((𝑁 + 1) − 1) = 𝑁) |
| 24 | 23 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑁 = ((𝑁 + 1) − 1)) |
| 25 | 24 | breq1d 5112 | . . . . . . 7 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑁 < 𝑘 ↔ ((𝑁 + 1) − 1) < 𝑘)) |
| 26 | 25 | notbid 318 | . . . . . 6 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (¬ 𝑁 < 𝑘 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘)) |
| 27 | 20, 26 | bitrd 279 | . . . . 5 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → (𝑘 ≤ 𝑁 ↔ ¬ ((𝑁 + 1) − 1) < 𝑘)) |
| 28 | 13, 27 | mpbid 232 | . . . 4 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → ¬ ((𝑁 + 1) − 1) < 𝑘) |
| 29 | 10, 28 | pm2.21dd 195 | . . 3 ⊢ (𝑘 ∈ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ ∅) |
| 30 | 29 | ssriv 3947 | . 2 ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ⊆ ∅ |
| 31 | ss0 4361 | . 2 ⊢ (((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) ⊆ ∅ → ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅) | |
| 32 | 30, 31 | ax-mp 5 | 1 ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 ≤ cle 11185 − cmin 11381 ℤcz 12505 ℤ≥cuz 12769 ...cfz 13444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 |
| This theorem is referenced by: chfacfscmulgsum 22723 chfacfpmmulgsum 22727 nnuzdisj 45324 |
| Copyright terms: Public domain | W3C validator |