Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const2 Structured version   Visualization version   GIF version

Theorem itg2const2 24343
 Description: When the base set of a constant function has infinite volume, the integral is also infinite and vice-versa. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
itg2const2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itg2const2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ∈ dom vol)
2 simpr 488 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
3 rpre 12385 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
43ad2antlr 726 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐵 ∈ ℝ)
5 rpge0 12390 . . . . . 6 (𝐵 ∈ ℝ+ → 0 ≤ 𝐵)
65ad2antlr 726 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 0 ≤ 𝐵)
7 elrege0 12832 . . . . 5 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
84, 6, 7sylanbrc 586 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐵 ∈ (0[,)+∞))
9 itg2const 24342 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
101, 2, 8, 9syl3anc 1368 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
114, 2remulcld 10660 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (𝐵 · (vol‘𝐴)) ∈ ℝ)
1210, 11eqeltrd 2914 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
13 mblvol 24132 . . . 4 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
1413ad2antrr 725 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) = (vol*‘𝐴))
15 mblss 24133 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1615ad3antrrr 729 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → 𝐴 ⊆ ℝ)
17 peano2re 10802 . . . . . . . 8 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
1817adantl 485 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
19 simplr 768 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℝ+)
2018, 19rerpdivcld 12450 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
2120adantr 484 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
22 simpr 488 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
23 ovollecl 24085 . . . . 5 ((𝐴 ⊆ ℝ ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ)
2416, 21, 22, 23syl3anc 1368 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ)
25 simplll 774 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → 𝐴 ∈ dom vol)
2620adantr 484 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
2726rexrd 10680 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*)
28 simpr 488 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
293ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
3029rexrd 10680 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ*)
315ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐵)
32 elxrge0 12835 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3330, 31, 32sylanbrc 586 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ (0[,]+∞))
34 0e0iccpnf 12837 . . . . . . . . . . . . . . . . 17 0 ∈ (0[,]+∞)
35 ifcl 4483 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,]+∞))
3633, 34, 35sylancl 589 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,]+∞))
3736fmpttd 6861 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
3837adantr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
39 itg2ge0 24337 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
4038, 39syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
4128, 40ge0p1rpd 12449 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ+)
4241, 19rpdivcld 12436 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ+)
4342rpge0d 12423 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
4443adantr 484 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
4514breq2d 5054 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴) ↔ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
4645biimpar 481 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))
47 0xr 10677 . . . . . . . . . 10 0 ∈ ℝ*
48 iccssxr 12808 . . . . . . . . . . . 12 (0[,]+∞) ⊆ ℝ*
49 volf 24131 . . . . . . . . . . . . 13 vol:dom vol⟶(0[,]+∞)
5049ffvelrni 6832 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
5148, 50sseldi 3940 . . . . . . . . . . 11 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
5225, 51syl 17 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
53 elicc1 12770 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)) ↔ ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ* ∧ 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))))
5447, 52, 53sylancr 590 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)) ↔ ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ* ∧ 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))))
5527, 44, 46, 54mpbir3and 1339 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)))
56 volivth 24209 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴))) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
5725, 55, 56syl2anc 587 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
5857ex 416 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))))
59 simprl 770 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝑧 ∈ dom vol)
60 simprrr 781 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
6120adantr 484 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
6260, 61eqeltrd 2914 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol‘𝑧) ∈ ℝ)
633ad2antlr 726 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℝ)
6463adantr 484 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ ℝ)
6519adantr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ ℝ+)
6665rpge0d 12423 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 0 ≤ 𝐵)
6764, 66, 7sylanbrc 586 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ (0[,)+∞))
68 itg2const 24342 . . . . . . . . . . 11 ((𝑧 ∈ dom vol ∧ (vol‘𝑧) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = (𝐵 · (vol‘𝑧)))
6959, 62, 67, 68syl3anc 1368 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = (𝐵 · (vol‘𝑧)))
7060oveq2d 7156 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝐵 · (vol‘𝑧)) = (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
7118recnd 10658 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℂ)
7263recnd 10658 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℂ)
73 rpne0 12393 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ≠ 0)
7473ad2antlr 726 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ≠ 0)
7571, 72, 74divcan2d 11407 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
7675adantr 484 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
7769, 70, 763eqtrd 2861 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
783adantl 485 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
7978rexrd 10680 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ*)
805adantl 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 0 ≤ 𝐵)
8179, 80, 32sylanbrc 586 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ (0[,]+∞))
82 ifcl 4483 . . . . . . . . . . . . . 14 ((𝐵 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8381, 34, 82sylancl 589 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8483adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8584fmpttd 6861 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞))
8685ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞))
8738adantr 484 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
88 simpl 486 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+))
89 simprl 770 . . . . . . . . . . 11 ((𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))) → 𝑧𝐴)
9078ad3antrrr 729 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝐵 ∈ ℝ)
9190leidd 11195 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝐵𝐵)
92 iftrue 4445 . . . . . . . . . . . . . . . 16 (𝑥𝑧 → if(𝑥𝑧, 𝐵, 0) = 𝐵)
9392adantl 485 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) = 𝐵)
94 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) → 𝑧𝐴)
9594sselda 3942 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝑥𝐴)
9695iftrued 4447 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝐴, 𝐵, 0) = 𝐵)
9791, 93, 963brtr4d 5074 . . . . . . . . . . . . . 14 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
98 iffalse 4448 . . . . . . . . . . . . . . . 16 𝑥𝑧 → if(𝑥𝑧, 𝐵, 0) = 0)
9998adantl 485 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) = 0)
100 0le0 11726 . . . . . . . . . . . . . . . . 17 0 ≤ 0
101 breq2 5046 . . . . . . . . . . . . . . . . . 18 (𝐵 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
102 breq2 5046 . . . . . . . . . . . . . . . . . 18 (0 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
103101, 102ifboth 4477 . . . . . . . . . . . . . . . . 17 ((0 ≤ 𝐵 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
10480, 100, 103sylancl 589 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
105104ad3antrrr 729 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
10699, 105eqbrtrd 5064 . . . . . . . . . . . . . 14 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
10797, 106pm2.61dan 812 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
108107ralrimiva 3174 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) → ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
109 reex 10617 . . . . . . . . . . . . . . 15 ℝ ∈ V
110109a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ℝ ∈ V)
111 eqidd 2823 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)))
112 eqidd 2823 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
113110, 84, 36, 111, 112ofrfval2 7412 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0)))
114113biimpar 481 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0)) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
115108, 114syldan 594 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
11688, 89, 115syl2an 598 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
117 itg2le 24341 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
11886, 87, 116, 117syl3anc 1368 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
11977, 118eqbrtrrd 5066 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
120 ltp1 11469 . . . . . . . . . 10 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
121120ad2antlr 726 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
122 simplr 768 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
12317ad2antlr 726 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
124122, 123ltnled 10776 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ↔ ¬ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
125121, 124mpbid 235 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ¬ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
126119, 125pm2.21dd 198 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol*‘𝐴) ∈ ℝ)
127126rexlimdvaa 3271 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ))
12858, 127syld 47 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴) → (vol*‘𝐴) ∈ ℝ))
129128imp 410 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (vol*‘𝐴) ∈ ℝ)
13051ad2antrr 725 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) ∈ ℝ*)
13114, 130eqeltrrd 2915 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ*)
13220rexrd 10680 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*)
133 xrletri 12534 . . . . 5 (((vol*‘𝐴) ∈ ℝ* ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*) → ((vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∨ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
134131, 132, 133syl2anc 587 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∨ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
13524, 129, 134mpjaodan 956 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ)
13614, 135eqeltrd 2914 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
13712, 136impbida 800 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   ≠ wne 3011  ∀wral 3130  ∃wrex 3131  Vcvv 3469   ⊆ wss 3908  ifcif 4439   class class class wbr 5042   ↦ cmpt 5122  dom cdm 5532  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140   ∘r cofr 7393  ℝcr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  ℝ*cxr 10663   < clt 10664   ≤ cle 10665   / cdiv 11286  ℝ+crp 12377  [,)cico 12728  [,]cicc 12729  vol*covol 24064  volcvol 24065  ∫2citg2 24218 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-disj 5008  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-ofr 7395  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-rlim 14837  df-sum 15034  df-rest 16687  df-topgen 16708  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-top 21497  df-topon 21514  df-bases 21549  df-cmp 21990  df-cncf 23481  df-ovol 24066  df-vol 24067  df-mbf 24221  df-itg1 24222  df-itg2 24223  df-0p 24272 This theorem is referenced by:  itg2gt0  24362
 Copyright terms: Public domain W3C validator