MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const2 Structured version   Visualization version   GIF version

Theorem itg2const2 23945
Description: When the base set of a constant function has infinite volume, the integral is also infinite and vice-versa. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
itg2const2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itg2const2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll 757 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ∈ dom vol)
2 simpr 479 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
3 rpre 12145 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
43ad2antlr 717 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐵 ∈ ℝ)
5 rpge0 12152 . . . . . 6 (𝐵 ∈ ℝ+ → 0 ≤ 𝐵)
65ad2antlr 717 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 0 ≤ 𝐵)
7 elrege0 12592 . . . . 5 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
84, 6, 7sylanbrc 578 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐵 ∈ (0[,)+∞))
9 itg2const 23944 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
101, 2, 8, 9syl3anc 1439 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
114, 2remulcld 10407 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (𝐵 · (vol‘𝐴)) ∈ ℝ)
1210, 11eqeltrd 2858 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
13 mblvol 23734 . . . 4 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
1413ad2antrr 716 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) = (vol*‘𝐴))
15 mblss 23735 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1615ad3antrrr 720 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → 𝐴 ⊆ ℝ)
17 peano2re 10549 . . . . . . . 8 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
1817adantl 475 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
19 simplr 759 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℝ+)
2018, 19rerpdivcld 12212 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
2120adantr 474 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
22 simpr 479 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
23 ovollecl 23687 . . . . 5 ((𝐴 ⊆ ℝ ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ)
2416, 21, 22, 23syl3anc 1439 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ)
25 simplll 765 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → 𝐴 ∈ dom vol)
2620adantr 474 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
2726rexrd 10426 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*)
28 simpr 479 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
293ad2antlr 717 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
3029rexrd 10426 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ*)
315ad2antlr 717 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐵)
32 elxrge0 12595 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3330, 31, 32sylanbrc 578 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ (0[,]+∞))
34 0e0iccpnf 12597 . . . . . . . . . . . . . . . . 17 0 ∈ (0[,]+∞)
35 ifcl 4350 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,]+∞))
3633, 34, 35sylancl 580 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,]+∞))
3736fmpttd 6649 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
3837adantr 474 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
39 itg2ge0 23939 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
4038, 39syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
4128, 40ge0p1rpd 12211 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ+)
4241, 19rpdivcld 12198 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ+)
4342rpge0d 12185 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
4443adantr 474 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
4514breq2d 4898 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴) ↔ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
4645biimpar 471 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))
47 0xr 10423 . . . . . . . . . 10 0 ∈ ℝ*
48 iccssxr 12568 . . . . . . . . . . . 12 (0[,]+∞) ⊆ ℝ*
49 volf 23733 . . . . . . . . . . . . 13 vol:dom vol⟶(0[,]+∞)
5049ffvelrni 6622 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
5148, 50sseldi 3818 . . . . . . . . . . 11 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
5225, 51syl 17 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
53 elicc1 12531 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)) ↔ ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ* ∧ 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))))
5447, 52, 53sylancr 581 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)) ↔ ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ* ∧ 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))))
5527, 44, 46, 54mpbir3and 1399 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)))
56 volivth 23811 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴))) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
5725, 55, 56syl2anc 579 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
5857ex 403 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))))
59 simprl 761 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝑧 ∈ dom vol)
60 simprrr 772 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
6120adantr 474 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
6260, 61eqeltrd 2858 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol‘𝑧) ∈ ℝ)
633ad2antlr 717 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℝ)
6463adantr 474 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ ℝ)
6519adantr 474 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ ℝ+)
6665rpge0d 12185 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 0 ≤ 𝐵)
6764, 66, 7sylanbrc 578 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ (0[,)+∞))
68 itg2const 23944 . . . . . . . . . . 11 ((𝑧 ∈ dom vol ∧ (vol‘𝑧) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = (𝐵 · (vol‘𝑧)))
6959, 62, 67, 68syl3anc 1439 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = (𝐵 · (vol‘𝑧)))
7060oveq2d 6938 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝐵 · (vol‘𝑧)) = (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
7118recnd 10405 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℂ)
7263recnd 10405 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℂ)
73 rpne0 12155 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ≠ 0)
7473ad2antlr 717 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ≠ 0)
7571, 72, 74divcan2d 11153 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
7675adantr 474 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
7769, 70, 763eqtrd 2817 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
783adantl 475 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
7978rexrd 10426 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ*)
805adantl 475 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 0 ≤ 𝐵)
8179, 80, 32sylanbrc 578 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ (0[,]+∞))
82 ifcl 4350 . . . . . . . . . . . . . 14 ((𝐵 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8381, 34, 82sylancl 580 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8483adantr 474 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8584fmpttd 6649 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞))
8685ad2antrr 716 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞))
8738adantr 474 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
88 simpl 476 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+))
89 simprl 761 . . . . . . . . . . 11 ((𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))) → 𝑧𝐴)
9078ad3antrrr 720 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝐵 ∈ ℝ)
9190leidd 10941 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝐵𝐵)
92 iftrue 4312 . . . . . . . . . . . . . . . 16 (𝑥𝑧 → if(𝑥𝑧, 𝐵, 0) = 𝐵)
9392adantl 475 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) = 𝐵)
94 simplr 759 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) → 𝑧𝐴)
9594sselda 3820 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝑥𝐴)
9695iftrued 4314 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝐴, 𝐵, 0) = 𝐵)
9791, 93, 963brtr4d 4918 . . . . . . . . . . . . . 14 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
98 iffalse 4315 . . . . . . . . . . . . . . . 16 𝑥𝑧 → if(𝑥𝑧, 𝐵, 0) = 0)
9998adantl 475 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) = 0)
100 0le0 11483 . . . . . . . . . . . . . . . . 17 0 ≤ 0
101 breq2 4890 . . . . . . . . . . . . . . . . . 18 (𝐵 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
102 breq2 4890 . . . . . . . . . . . . . . . . . 18 (0 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
103101, 102ifboth 4344 . . . . . . . . . . . . . . . . 17 ((0 ≤ 𝐵 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
10480, 100, 103sylancl 580 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
105104ad3antrrr 720 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
10699, 105eqbrtrd 4908 . . . . . . . . . . . . . 14 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
10797, 106pm2.61dan 803 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
108107ralrimiva 3147 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) → ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
109 reex 10363 . . . . . . . . . . . . . . 15 ℝ ∈ V
110109a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ℝ ∈ V)
111 eqidd 2778 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)))
112 eqidd 2778 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
113110, 84, 36, 111, 112ofrfval2 7192 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0)))
114113biimpar 471 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0)) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
115108, 114syldan 585 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
11688, 89, 115syl2an 589 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
117 itg2le 23943 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
11886, 87, 116, 117syl3anc 1439 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
11977, 118eqbrtrrd 4910 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
120 ltp1 11215 . . . . . . . . . 10 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
121120ad2antlr 717 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
122 simplr 759 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
12317ad2antlr 717 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
124122, 123ltnled 10523 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ↔ ¬ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
125121, 124mpbid 224 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ¬ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
126119, 125pm2.21dd 187 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol*‘𝐴) ∈ ℝ)
127126rexlimdvaa 3213 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ))
12858, 127syld 47 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴) → (vol*‘𝐴) ∈ ℝ))
129128imp 397 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (vol*‘𝐴) ∈ ℝ)
13051ad2antrr 716 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) ∈ ℝ*)
13114, 130eqeltrrd 2859 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ*)
13220rexrd 10426 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*)
133 xrletri 12296 . . . . 5 (((vol*‘𝐴) ∈ ℝ* ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*) → ((vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∨ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
134131, 132, 133syl2anc 579 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∨ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
13524, 129, 134mpjaodan 944 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ)
13614, 135eqeltrd 2858 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
13712, 136impbida 791 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2106  wne 2968  wral 3089  wrex 3090  Vcvv 3397  wss 3791  ifcif 4306   class class class wbr 4886  cmpt 4965  dom cdm 5355  wf 6131  cfv 6135  (class class class)co 6922  𝑟 cofr 7173  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  +∞cpnf 10408  *cxr 10410   < clt 10411  cle 10412   / cdiv 11032  +crp 12137  [,)cico 12489  [,]cicc 12490  vol*covol 23666  volcvol 23667  2citg2 23820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cc 9592  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-ofr 7175  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-rest 16469  df-topgen 16490  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-top 21106  df-topon 21123  df-bases 21158  df-cmp 21599  df-cncf 23089  df-ovol 23668  df-vol 23669  df-mbf 23823  df-itg1 23824  df-itg2 23825  df-0p 23874
This theorem is referenced by:  itg2gt0  23964
  Copyright terms: Public domain W3C validator