MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const2 Structured version   Visualization version   GIF version

Theorem itg2const2 24894
Description: When the base set of a constant function has infinite volume, the integral is also infinite and vice-versa. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
itg2const2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itg2const2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll 764 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ∈ dom vol)
2 simpr 485 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
3 rpre 12726 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
43ad2antlr 724 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐵 ∈ ℝ)
5 rpge0 12731 . . . . . 6 (𝐵 ∈ ℝ+ → 0 ≤ 𝐵)
65ad2antlr 724 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 0 ≤ 𝐵)
7 elrege0 13174 . . . . 5 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
84, 6, 7sylanbrc 583 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐵 ∈ (0[,)+∞))
9 itg2const 24893 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
101, 2, 8, 9syl3anc 1370 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
114, 2remulcld 10993 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (𝐵 · (vol‘𝐴)) ∈ ℝ)
1210, 11eqeltrd 2839 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
13 mblvol 24682 . . . 4 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
1413ad2antrr 723 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) = (vol*‘𝐴))
15 mblss 24683 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1615ad3antrrr 727 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → 𝐴 ⊆ ℝ)
17 peano2re 11136 . . . . . . . 8 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
1817adantl 482 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
19 simplr 766 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℝ+)
2018, 19rerpdivcld 12791 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
2120adantr 481 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
22 simpr 485 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
23 ovollecl 24635 . . . . 5 ((𝐴 ⊆ ℝ ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ)
2416, 21, 22, 23syl3anc 1370 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ)
25 simplll 772 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → 𝐴 ∈ dom vol)
2620adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
2726rexrd 11013 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*)
28 simpr 485 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
293ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
3029rexrd 11013 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ*)
315ad2antlr 724 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐵)
32 elxrge0 13177 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3330, 31, 32sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ (0[,]+∞))
34 0e0iccpnf 13179 . . . . . . . . . . . . . . . . 17 0 ∈ (0[,]+∞)
35 ifcl 4505 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,]+∞))
3633, 34, 35sylancl 586 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,]+∞))
3736fmpttd 6982 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
3837adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
39 itg2ge0 24888 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
4038, 39syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
4128, 40ge0p1rpd 12790 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ+)
4241, 19rpdivcld 12777 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ+)
4342rpge0d 12764 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
4443adantr 481 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
4514breq2d 5086 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴) ↔ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
4645biimpar 478 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))
47 0xr 11010 . . . . . . . . . 10 0 ∈ ℝ*
48 iccssxr 13150 . . . . . . . . . . . 12 (0[,]+∞) ⊆ ℝ*
49 volf 24681 . . . . . . . . . . . . 13 vol:dom vol⟶(0[,]+∞)
5049ffvelrni 6953 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
5148, 50sselid 3919 . . . . . . . . . . 11 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
5225, 51syl 17 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
53 elicc1 13111 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)) ↔ ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ* ∧ 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))))
5447, 52, 53sylancr 587 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)) ↔ ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ* ∧ 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))))
5527, 44, 46, 54mpbir3and 1341 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)))
56 volivth 24759 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴))) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
5725, 55, 56syl2anc 584 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
5857ex 413 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))))
59 simprl 768 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝑧 ∈ dom vol)
60 simprrr 779 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
6120adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
6260, 61eqeltrd 2839 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol‘𝑧) ∈ ℝ)
633ad2antlr 724 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℝ)
6463adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ ℝ)
6519adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ ℝ+)
6665rpge0d 12764 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 0 ≤ 𝐵)
6764, 66, 7sylanbrc 583 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ (0[,)+∞))
68 itg2const 24893 . . . . . . . . . . 11 ((𝑧 ∈ dom vol ∧ (vol‘𝑧) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = (𝐵 · (vol‘𝑧)))
6959, 62, 67, 68syl3anc 1370 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = (𝐵 · (vol‘𝑧)))
7060oveq2d 7284 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝐵 · (vol‘𝑧)) = (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
7118recnd 10991 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℂ)
7263recnd 10991 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℂ)
73 rpne0 12734 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ≠ 0)
7473ad2antlr 724 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ≠ 0)
7571, 72, 74divcan2d 11741 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
7675adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
7769, 70, 763eqtrd 2782 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
783adantl 482 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
7978rexrd 11013 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ*)
805adantl 482 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 0 ≤ 𝐵)
8179, 80, 32sylanbrc 583 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ (0[,]+∞))
82 ifcl 4505 . . . . . . . . . . . . . 14 ((𝐵 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8381, 34, 82sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8483adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8584fmpttd 6982 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞))
8685ad2antrr 723 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞))
8738adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
88 simpl 483 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+))
89 simprl 768 . . . . . . . . . . 11 ((𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))) → 𝑧𝐴)
9078ad3antrrr 727 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝐵 ∈ ℝ)
9190leidd 11529 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝐵𝐵)
92 iftrue 4466 . . . . . . . . . . . . . . . 16 (𝑥𝑧 → if(𝑥𝑧, 𝐵, 0) = 𝐵)
9392adantl 482 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) = 𝐵)
94 simplr 766 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) → 𝑧𝐴)
9594sselda 3921 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝑥𝐴)
9695iftrued 4468 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝐴, 𝐵, 0) = 𝐵)
9791, 93, 963brtr4d 5106 . . . . . . . . . . . . . 14 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
98 iffalse 4469 . . . . . . . . . . . . . . . 16 𝑥𝑧 → if(𝑥𝑧, 𝐵, 0) = 0)
9998adantl 482 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) = 0)
100 0le0 12062 . . . . . . . . . . . . . . . . 17 0 ≤ 0
101 breq2 5078 . . . . . . . . . . . . . . . . . 18 (𝐵 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
102 breq2 5078 . . . . . . . . . . . . . . . . . 18 (0 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
103101, 102ifboth 4499 . . . . . . . . . . . . . . . . 17 ((0 ≤ 𝐵 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
10480, 100, 103sylancl 586 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
105104ad3antrrr 727 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
10699, 105eqbrtrd 5096 . . . . . . . . . . . . . 14 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
10797, 106pm2.61dan 810 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
108107ralrimiva 3113 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) → ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
109 reex 10950 . . . . . . . . . . . . . . 15 ℝ ∈ V
110109a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ℝ ∈ V)
111 eqidd 2739 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)))
112 eqidd 2739 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
113110, 84, 36, 111, 112ofrfval2 7545 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0)))
114113biimpar 478 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0)) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
115108, 114syldan 591 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
11688, 89, 115syl2an 596 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
117 itg2le 24892 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
11886, 87, 116, 117syl3anc 1370 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
11977, 118eqbrtrrd 5098 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
120 ltp1 11803 . . . . . . . . . 10 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
121120ad2antlr 724 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
122 simplr 766 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
12317ad2antlr 724 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
124122, 123ltnled 11110 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ↔ ¬ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
125121, 124mpbid 231 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ¬ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
126119, 125pm2.21dd 194 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol*‘𝐴) ∈ ℝ)
127126rexlimdvaa 3212 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ))
12858, 127syld 47 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴) → (vol*‘𝐴) ∈ ℝ))
129128imp 407 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (vol*‘𝐴) ∈ ℝ)
13051ad2antrr 723 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) ∈ ℝ*)
13114, 130eqeltrrd 2840 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ*)
13220rexrd 11013 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*)
133 xrletri 12875 . . . . 5 (((vol*‘𝐴) ∈ ℝ* ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*) → ((vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∨ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
134131, 132, 133syl2anc 584 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∨ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
13524, 129, 134mpjaodan 956 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ)
13614, 135eqeltrd 2839 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
13712, 136impbida 798 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3430  wss 3887  ifcif 4460   class class class wbr 5074  cmpt 5157  dom cdm 5585  wf 6423  cfv 6427  (class class class)co 7268  r cofr 7523  cr 10858  0cc0 10859  1c1 10860   + caddc 10862   · cmul 10864  +∞cpnf 10994  *cxr 10996   < clt 10997  cle 10998   / cdiv 11620  +crp 12718  [,)cico 13069  [,]cicc 13070  vol*covol 24614  volcvol 24615  2citg2 24768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387  ax-cc 10179  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937  ax-addf 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-ofr 7525  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-2o 8286  df-er 8486  df-map 8605  df-pm 8606  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-fi 9158  df-sup 9189  df-inf 9190  df-oi 9257  df-dju 9647  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-2 12024  df-3 12025  df-n0 12222  df-z 12308  df-uz 12571  df-q 12677  df-rp 12719  df-xneg 12836  df-xadd 12837  df-xmul 12838  df-ioo 13071  df-ico 13073  df-icc 13074  df-fz 13228  df-fzo 13371  df-fl 13500  df-seq 13710  df-exp 13771  df-hash 14033  df-cj 14798  df-re 14799  df-im 14800  df-sqrt 14934  df-abs 14935  df-clim 15185  df-rlim 15186  df-sum 15386  df-rest 17121  df-topgen 17142  df-psmet 20577  df-xmet 20578  df-met 20579  df-bl 20580  df-mopn 20581  df-top 22031  df-topon 22048  df-bases 22084  df-cmp 22526  df-cncf 24029  df-ovol 24616  df-vol 24617  df-mbf 24771  df-itg1 24772  df-itg2 24773  df-0p 24822
This theorem is referenced by:  itg2gt0  24913
  Copyright terms: Public domain W3C validator