MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const2 Structured version   Visualization version   GIF version

Theorem itg2const2 24345
Description: When the base set of a constant function has infinite volume, the integral is also infinite and vice-versa. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
itg2const2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itg2const2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ∈ dom vol)
2 simpr 488 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
3 rpre 12385 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
43ad2antlr 726 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐵 ∈ ℝ)
5 rpge0 12390 . . . . . 6 (𝐵 ∈ ℝ+ → 0 ≤ 𝐵)
65ad2antlr 726 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 0 ≤ 𝐵)
7 elrege0 12832 . . . . 5 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
84, 6, 7sylanbrc 586 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → 𝐵 ∈ (0[,)+∞))
9 itg2const 24344 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
101, 2, 8, 9syl3anc 1368 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
114, 2remulcld 10660 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (𝐵 · (vol‘𝐴)) ∈ ℝ)
1210, 11eqeltrd 2890 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (vol‘𝐴) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
13 mblvol 24134 . . . 4 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
1413ad2antrr 725 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) = (vol*‘𝐴))
15 mblss 24135 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1615ad3antrrr 729 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → 𝐴 ⊆ ℝ)
17 peano2re 10802 . . . . . . . 8 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
1817adantl 485 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
19 simplr 768 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℝ+)
2018, 19rerpdivcld 12450 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
2120adantr 484 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
22 simpr 488 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
23 ovollecl 24087 . . . . 5 ((𝐴 ⊆ ℝ ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ)
2416, 21, 22, 23syl3anc 1368 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ)
25 simplll 774 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → 𝐴 ∈ dom vol)
2620adantr 484 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
2726rexrd 10680 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*)
28 simpr 488 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
293ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
3029rexrd 10680 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ*)
315ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐵)
32 elxrge0 12835 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3330, 31, 32sylanbrc 586 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ (0[,]+∞))
34 0e0iccpnf 12837 . . . . . . . . . . . . . . . . 17 0 ∈ (0[,]+∞)
35 ifcl 4469 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,]+∞))
3633, 34, 35sylancl 589 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,]+∞))
3736fmpttd 6856 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
3837adantr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
39 itg2ge0 24339 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
4038, 39syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
4128, 40ge0p1rpd 12449 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ+)
4241, 19rpdivcld 12436 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ+)
4342rpge0d 12423 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
4443adantr 484 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
4514breq2d 5042 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴) ↔ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
4645biimpar 481 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))
47 0xr 10677 . . . . . . . . . 10 0 ∈ ℝ*
48 iccssxr 12808 . . . . . . . . . . . 12 (0[,]+∞) ⊆ ℝ*
49 volf 24133 . . . . . . . . . . . . 13 vol:dom vol⟶(0[,]+∞)
5049ffvelrni 6827 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
5148, 50sseldi 3913 . . . . . . . . . . 11 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
5225, 51syl 17 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
53 elicc1 12770 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)) ↔ ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ* ∧ 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))))
5447, 52, 53sylancr 590 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)) ↔ ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ* ∧ 0 ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴))))
5527, 44, 46, 54mpbir3and 1339 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)))
56 volivth 24211 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴))) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
5725, 55, 56syl2anc 587 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
5857ex 416 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴) → ∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))))
59 simprl 770 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝑧 ∈ dom vol)
60 simprrr 781 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))
6120adantr 484 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ)
6260, 61eqeltrd 2890 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol‘𝑧) ∈ ℝ)
633ad2antlr 726 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℝ)
6463adantr 484 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ ℝ)
6519adantr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ ℝ+)
6665rpge0d 12423 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 0 ≤ 𝐵)
6764, 66, 7sylanbrc 586 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ (0[,)+∞))
68 itg2const 24344 . . . . . . . . . . 11 ((𝑧 ∈ dom vol ∧ (vol‘𝑧) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = (𝐵 · (vol‘𝑧)))
6959, 62, 67, 68syl3anc 1368 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = (𝐵 · (vol‘𝑧)))
7060oveq2d 7151 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝐵 · (vol‘𝑧)) = (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))
7118recnd 10658 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℂ)
7263recnd 10658 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈ ℂ)
73 rpne0 12393 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ≠ 0)
7473ad2antlr 726 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ≠ 0)
7571, 72, 74divcan2d 11407 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
7675adantr 484 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
7769, 70, 763eqtrd 2837 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
783adantl 485 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
7978rexrd 10680 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ*)
805adantl 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 0 ≤ 𝐵)
8179, 80, 32sylanbrc 586 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ (0[,]+∞))
82 ifcl 4469 . . . . . . . . . . . . . 14 ((𝐵 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8381, 34, 82sylancl 589 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8483adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑧, 𝐵, 0) ∈ (0[,]+∞))
8584fmpttd 6856 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞))
8685ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞))
8738adantr 484 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞))
88 simpl 486 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+))
89 simprl 770 . . . . . . . . . . 11 ((𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵))) → 𝑧𝐴)
9078ad3antrrr 729 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝐵 ∈ ℝ)
9190leidd 11195 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝐵𝐵)
92 iftrue 4431 . . . . . . . . . . . . . . . 16 (𝑥𝑧 → if(𝑥𝑧, 𝐵, 0) = 𝐵)
9392adantl 485 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) = 𝐵)
94 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) → 𝑧𝐴)
9594sselda 3915 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → 𝑥𝐴)
9695iftrued 4433 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝐴, 𝐵, 0) = 𝐵)
9791, 93, 963brtr4d 5062 . . . . . . . . . . . . . 14 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
98 iffalse 4434 . . . . . . . . . . . . . . . 16 𝑥𝑧 → if(𝑥𝑧, 𝐵, 0) = 0)
9998adantl 485 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) = 0)
100 0le0 11726 . . . . . . . . . . . . . . . . 17 0 ≤ 0
101 breq2 5034 . . . . . . . . . . . . . . . . . 18 (𝐵 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
102 breq2 5034 . . . . . . . . . . . . . . . . . 18 (0 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
103101, 102ifboth 4463 . . . . . . . . . . . . . . . . 17 ((0 ≤ 𝐵 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
10480, 100, 103sylancl 589 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
105104ad3antrrr 729 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
10699, 105eqbrtrd 5052 . . . . . . . . . . . . . 14 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑧) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
10797, 106pm2.61dan 812 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
108107ralrimiva 3149 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) → ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0))
109 reex 10617 . . . . . . . . . . . . . . 15 ℝ ∈ V
110109a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ℝ ∈ V)
111 eqidd 2799 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)))
112 eqidd 2799 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
113110, 84, 36, 111, 112ofrfval2 7407 . . . . . . . . . . . . 13 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0)))
114113biimpar 481 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ if(𝑥𝑧, 𝐵, 0) ≤ if(𝑥𝐴, 𝐵, 0)) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
115108, 114syldan 594 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ 𝑧𝐴) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
11688, 89, 115syl2an 598 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
117 itg2le 24343 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
11886, 87, 116, 117syl3anc 1368 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑧, 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
11977, 118eqbrtrrd 5054 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
120 ltp1 11469 . . . . . . . . . 10 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
121120ad2antlr 726 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1))
122 simplr 768 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
12317ad2antlr 726 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ∈ ℝ)
124122, 123ltnled 10776 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ↔ ¬ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
125121, 124mpbid 235 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ¬ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
126119, 125pm2.21dd 198 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol*‘𝐴) ∈ ℝ)
127126rexlimdvaa 3244 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (∃𝑧 ∈ dom vol(𝑧𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ))
12858, 127syld 47 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴) → (vol*‘𝐴) ∈ ℝ))
129128imp 410 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (vol*‘𝐴) ∈ ℝ)
13051ad2antrr 725 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) ∈ ℝ*)
13114, 130eqeltrrd 2891 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ*)
13220rexrd 10680 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*)
133 xrletri 12534 . . . . 5 (((vol*‘𝐴) ∈ ℝ* ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*) → ((vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∨ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
134131, 132, 133syl2anc 587 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → ((vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ∨ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)))
13524, 129, 134mpjaodan 956 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ)
13614, 135eqeltrd 2890 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
13712, 136impbida 800 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+) → ((vol‘𝐴) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  ifcif 4425   class class class wbr 5030  cmpt 5110  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  r cofr 7388  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  +crp 12377  [,)cico 12728  [,]cicc 12729  vol*covol 24066  volcvol 24067  2citg2 24220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-cncf 23483  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-0p 24274
This theorem is referenced by:  itg2gt0  24364
  Copyright terms: Public domain W3C validator