| Step | Hyp | Ref
| Expression |
| 1 | | simpll 766 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (vol‘𝐴) ∈
ℝ) → 𝐴 ∈
dom vol) |
| 2 | | simpr 484 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (vol‘𝐴) ∈
ℝ) → (vol‘𝐴) ∈ ℝ) |
| 3 | | rpre 13022 |
. . . . . 6
⊢ (𝐵 ∈ ℝ+
→ 𝐵 ∈
ℝ) |
| 4 | 3 | ad2antlr 727 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (vol‘𝐴) ∈
ℝ) → 𝐵 ∈
ℝ) |
| 5 | | rpge0 13027 |
. . . . . 6
⊢ (𝐵 ∈ ℝ+
→ 0 ≤ 𝐵) |
| 6 | 5 | ad2antlr 727 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (vol‘𝐴) ∈
ℝ) → 0 ≤ 𝐵) |
| 7 | | elrege0 13476 |
. . . . 5
⊢ (𝐵 ∈ (0[,)+∞) ↔
(𝐵 ∈ ℝ ∧ 0
≤ 𝐵)) |
| 8 | 4, 6, 7 | sylanbrc 583 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (vol‘𝐴) ∈
ℝ) → 𝐵 ∈
(0[,)+∞)) |
| 9 | | itg2const 25698 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
(0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴))) |
| 10 | 1, 2, 8, 9 | syl3anc 1373 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (vol‘𝐴) ∈
ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴))) |
| 11 | 4, 2 | remulcld 11270 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (vol‘𝐴) ∈
ℝ) → (𝐵 ·
(vol‘𝐴)) ∈
ℝ) |
| 12 | 10, 11 | eqeltrd 2835 |
. 2
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (vol‘𝐴) ∈
ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) |
| 13 | | mblvol 25488 |
. . . 4
⊢ (𝐴 ∈ dom vol →
(vol‘𝐴) =
(vol*‘𝐴)) |
| 14 | 13 | ad2antrr 726 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
(vol‘𝐴) =
(vol*‘𝐴)) |
| 15 | | mblss 25489 |
. . . . . 6
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
| 16 | 15 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(vol*‘𝐴) ≤
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)) → 𝐴 ⊆ ℝ) |
| 17 | | peano2re 11413 |
. . . . . . . 8
⊢
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ →
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) ∈ ℝ) |
| 18 | 17 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) ∈ ℝ) |
| 19 | | simplr 768 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈
ℝ+) |
| 20 | 18, 19 | rerpdivcld 13087 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ) |
| 21 | 20 | adantr 480 |
. . . . 5
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(vol*‘𝐴) ≤
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ) |
| 22 | | simpr 484 |
. . . . 5
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(vol*‘𝐴) ≤
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ≤ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)) |
| 23 | | ovollecl 25441 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ ∧ (vol*‘𝐴) ≤
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ) |
| 24 | 16, 21, 22, 23 | syl3anc 1373 |
. . . 4
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(vol*‘𝐴) ≤
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ) |
| 25 | | simplll 774 |
. . . . . . . 8
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → 𝐴 ∈ dom vol) |
| 26 | 20 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ) |
| 27 | 26 | rexrd 11290 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈
ℝ*) |
| 28 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 𝐵, 0))) ∈ ℝ) |
| 29 | 3 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ 𝐵 ∈
ℝ) |
| 30 | 29 | rexrd 11290 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ 𝐵 ∈
ℝ*) |
| 31 | 5 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ 0 ≤ 𝐵) |
| 32 | | elxrge0 13479 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ (0[,]+∞) ↔
(𝐵 ∈
ℝ* ∧ 0 ≤ 𝐵)) |
| 33 | 30, 31, 32 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ 𝐵 ∈
(0[,]+∞)) |
| 34 | | 0e0iccpnf 13481 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
(0[,]+∞) |
| 35 | | ifcl 4551 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ (0[,]+∞) ∧ 0
∈ (0[,]+∞)) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,]+∞)) |
| 36 | 33, 34, 35 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,]+∞)) |
| 37 | 36 | fmpttd 7110 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ (𝑥 ∈ ℝ
↦ if(𝑥 ∈ 𝐴, 𝐵,
0)):ℝ⟶(0[,]+∞)) |
| 38 | 37 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵,
0)):ℝ⟶(0[,]+∞)) |
| 39 | | itg2ge0 25693 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞) → 0
≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) → 0 ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 𝐵, 0)))) |
| 41 | 28, 40 | ge0p1rpd 13086 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) ∈
ℝ+) |
| 42 | 41, 19 | rpdivcld 13073 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈
ℝ+) |
| 43 | 42 | rpge0d 13060 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) → 0 ≤
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)) |
| 44 | 43 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → 0 ≤
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)) |
| 45 | 14 | breq2d 5136 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴) ↔ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴))) |
| 46 | 45 | biimpar 477 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴)) |
| 47 | | 0xr 11287 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
| 48 | | iccssxr 13452 |
. . . . . . . . . . . 12
⊢
(0[,]+∞) ⊆ ℝ* |
| 49 | | volf 25487 |
. . . . . . . . . . . . 13
⊢ vol:dom
vol⟶(0[,]+∞) |
| 50 | 49 | ffvelcdmi 7078 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ dom vol →
(vol‘𝐴) ∈
(0[,]+∞)) |
| 51 | 48, 50 | sselid 3961 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ dom vol →
(vol‘𝐴) ∈
ℝ*) |
| 52 | 25, 51 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (vol‘𝐴) ∈
ℝ*) |
| 53 | | elicc1 13411 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) →
((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)) ↔ ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ* ∧ 0 ≤
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴)))) |
| 54 | 47, 52, 53 | sylancr 587 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴)) ↔ ((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ* ∧ 0 ≤
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol‘𝐴)))) |
| 55 | 27, 44, 46, 54 | mpbir3and 1343 |
. . . . . . . 8
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴))) |
| 56 | | volivth 25565 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom vol ∧
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ (0[,](vol‘𝐴))) → ∃𝑧 ∈ dom vol(𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵))) |
| 57 | 25, 55, 56 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → ∃𝑧 ∈ dom vol(𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵))) |
| 58 | 57 | ex 412 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴) → ∃𝑧 ∈ dom vol(𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) |
| 59 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝑧 ∈ dom vol) |
| 60 | | simprrr 781 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)) |
| 61 | 20 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) →
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ) |
| 62 | 60, 61 | eqeltrd 2835 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol‘𝑧) ∈ ℝ) |
| 63 | 3 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈
ℝ) |
| 64 | 63 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ ℝ) |
| 65 | 19 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈
ℝ+) |
| 66 | 65 | rpge0d 13060 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 0 ≤ 𝐵) |
| 67 | 64, 66, 7 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → 𝐵 ∈ (0[,)+∞)) |
| 68 | | itg2const 25698 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ dom vol ∧
(vol‘𝑧) ∈
ℝ ∧ 𝐵 ∈
(0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑧, 𝐵, 0))) = (𝐵 · (vol‘𝑧))) |
| 69 | 59, 62, 67, 68 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑧, 𝐵, 0))) = (𝐵 · (vol‘𝑧))) |
| 70 | 60 | oveq2d 7426 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝐵 · (vol‘𝑧)) = (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵))) |
| 71 | 18 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) ∈ ℂ) |
| 72 | 63 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ∈
ℂ) |
| 73 | | rpne0 13030 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℝ+
→ 𝐵 ≠
0) |
| 74 | 73 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) → 𝐵 ≠ 0) |
| 75 | 71, 72, 74 | divcan2d 12024 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) → (𝐵 ·
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1)) |
| 76 | 75 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝐵 · (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1)) |
| 77 | 69, 70, 76 | 3eqtrd 2775 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑧, 𝐵, 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1)) |
| 78 | 3 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ 𝐵 ∈
ℝ) |
| 79 | 78 | rexrd 11290 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ 𝐵 ∈
ℝ*) |
| 80 | 5 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ 0 ≤ 𝐵) |
| 81 | 79, 80, 32 | sylanbrc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ 𝐵 ∈
(0[,]+∞)) |
| 82 | | ifcl 4551 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ (0[,]+∞) ∧ 0
∈ (0[,]+∞)) → if(𝑥 ∈ 𝑧, 𝐵, 0) ∈ (0[,]+∞)) |
| 83 | 81, 34, 82 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ if(𝑥 ∈ 𝑧, 𝐵, 0) ∈ (0[,]+∞)) |
| 84 | 83 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ 𝑥 ∈ ℝ)
→ if(𝑥 ∈ 𝑧, 𝐵, 0) ∈ (0[,]+∞)) |
| 85 | 84 | fmpttd 7110 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ (𝑥 ∈ ℝ
↦ if(𝑥 ∈ 𝑧, 𝐵,
0)):ℝ⟶(0[,]+∞)) |
| 86 | 85 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑧, 𝐵,
0)):ℝ⟶(0[,]+∞)) |
| 87 | 38 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵,
0)):ℝ⟶(0[,]+∞)) |
| 88 | | simpl 482 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) → (𝐴 ∈ dom vol ∧ 𝐵 ∈
ℝ+)) |
| 89 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵))) → 𝑧 ⊆ 𝐴) |
| 90 | 78 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
ℝ+) ∧ 𝑧 ⊆ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝑧) → 𝐵 ∈ ℝ) |
| 91 | 90 | leidd 11808 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
ℝ+) ∧ 𝑧 ⊆ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝑧) → 𝐵 ≤ 𝐵) |
| 92 | | iftrue 4511 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑧 → if(𝑥 ∈ 𝑧, 𝐵, 0) = 𝐵) |
| 93 | 92 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
ℝ+) ∧ 𝑧 ⊆ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝑧) → if(𝑥 ∈ 𝑧, 𝐵, 0) = 𝐵) |
| 94 | | simplr 768 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ 𝑧 ⊆ 𝐴) ∧ 𝑥 ∈ ℝ) → 𝑧 ⊆ 𝐴) |
| 95 | 94 | sselda 3963 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
ℝ+) ∧ 𝑧 ⊆ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝑧) → 𝑥 ∈ 𝐴) |
| 96 | 95 | iftrued 4513 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
ℝ+) ∧ 𝑧 ⊆ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝑧) → if(𝑥 ∈ 𝐴, 𝐵, 0) = 𝐵) |
| 97 | 91, 93, 96 | 3brtr4d 5156 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
ℝ+) ∧ 𝑧 ⊆ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ 𝑧) → if(𝑥 ∈ 𝑧, 𝐵, 0) ≤ if(𝑥 ∈ 𝐴, 𝐵, 0)) |
| 98 | | iffalse 4514 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑥 ∈ 𝑧 → if(𝑥 ∈ 𝑧, 𝐵, 0) = 0) |
| 99 | 98 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
ℝ+) ∧ 𝑧 ⊆ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝑧) → if(𝑥 ∈ 𝑧, 𝐵, 0) = 0) |
| 100 | | 0le0 12346 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≤
0 |
| 101 | | breq2 5128 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 = if(𝑥 ∈ 𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ 0 ≤ if(𝑥 ∈ 𝐴, 𝐵, 0))) |
| 102 | | breq2 5128 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 =
if(𝑥 ∈ 𝐴, 𝐵, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥 ∈ 𝐴, 𝐵, 0))) |
| 103 | 101, 102 | ifboth 4545 |
. . . . . . . . . . . . . . . . 17
⊢ ((0 ≤
𝐵 ∧ 0 ≤ 0) → 0
≤ if(𝑥 ∈ 𝐴, 𝐵, 0)) |
| 104 | 80, 100, 103 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ 0 ≤ if(𝑥 ∈
𝐴, 𝐵, 0)) |
| 105 | 104 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
ℝ+) ∧ 𝑧 ⊆ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝑧) → 0 ≤ if(𝑥 ∈ 𝐴, 𝐵, 0)) |
| 106 | 99, 105 | eqbrtrd 5146 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
ℝ+) ∧ 𝑧 ⊆ 𝐴) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ 𝑧) → if(𝑥 ∈ 𝑧, 𝐵, 0) ≤ if(𝑥 ∈ 𝐴, 𝐵, 0)) |
| 107 | 97, 106 | pm2.61dan 812 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ 𝑧 ⊆ 𝐴) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝑧, 𝐵, 0) ≤ if(𝑥 ∈ 𝐴, 𝐵, 0)) |
| 108 | 107 | ralrimiva 3133 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ 𝑧 ⊆ 𝐴) → ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝑧, 𝐵, 0) ≤ if(𝑥 ∈ 𝐴, 𝐵, 0)) |
| 109 | | reex 11225 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ V |
| 110 | 109 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ ℝ ∈ V) |
| 111 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ (𝑥 ∈ ℝ
↦ if(𝑥 ∈ 𝑧, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑧, 𝐵, 0))) |
| 112 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ (𝑥 ∈ ℝ
↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) |
| 113 | 110, 84, 36, 111, 112 | ofrfval2 7697 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ ((𝑥 ∈ ℝ
↦ if(𝑥 ∈ 𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ 𝑧, 𝐵, 0) ≤ if(𝑥 ∈ 𝐴, 𝐵, 0))) |
| 114 | 113 | biimpar 477 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ ∀𝑥 ∈
ℝ if(𝑥 ∈ 𝑧, 𝐵, 0) ≤ if(𝑥 ∈ 𝐴, 𝐵, 0)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) |
| 115 | 108, 114 | syldan 591 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ 𝑧 ⊆ 𝐴) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) |
| 116 | 88, 89, 115 | syl2an 596 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) |
| 117 | | itg2le 25697 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑧, 𝐵, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐴, 𝐵, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝑧, 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝑧, 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
| 118 | 86, 87, 116, 117 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑧, 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
| 119 | 77, 118 | eqbrtrrd 5148 |
. . . . . . . 8
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 𝐵, 0)))) |
| 120 | | ltp1 12086 |
. . . . . . . . . 10
⊢
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1)) |
| 121 | 120 | ad2antlr 727 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1)) |
| 122 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) |
| 123 | 17 | ad2antlr 727 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) ∈ ℝ) |
| 124 | 122, 123 | ltnled 11387 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) < ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) ↔ ¬
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 𝐵, 0))))) |
| 125 | 121, 124 | mpbid 232 |
. . . . . . . 8
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → ¬
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, 𝐵, 0)))) |
| 126 | 119, 125 | pm2.21dd 195 |
. . . . . . 7
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧ (𝑧 ∈ dom vol ∧ (𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)))) → (vol*‘𝐴) ∈ ℝ) |
| 127 | 126 | rexlimdvaa 3143 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) → (∃𝑧 ∈ dom vol(𝑧 ⊆ 𝐴 ∧ (vol‘𝑧) = (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵)) → (vol*‘𝐴) ∈ ℝ)) |
| 128 | 58, 127 | syld 47 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
((((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴) → (vol*‘𝐴) ∈ ℝ)) |
| 129 | 128 | imp 406 |
. . . 4
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) ∧
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴)) → (vol*‘𝐴) ∈ ℝ) |
| 130 | 51 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
(vol‘𝐴) ∈
ℝ*) |
| 131 | 14, 130 | eqeltrrd 2836 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
(vol*‘𝐴) ∈
ℝ*) |
| 132 | 20 | rexrd 11290 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈
ℝ*) |
| 133 | | xrletri 13174 |
. . . . 5
⊢
(((vol*‘𝐴)
∈ ℝ* ∧ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∈ ℝ*) →
((vol*‘𝐴) ≤
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∨ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴))) |
| 134 | 131, 132,
133 | syl2anc 584 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
((vol*‘𝐴) ≤
(((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ∨ (((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) + 1) / 𝐵) ≤ (vol*‘𝐴))) |
| 135 | 24, 129, 134 | mpjaodan 960 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
(vol*‘𝐴) ∈
ℝ) |
| 136 | 14, 135 | eqeltrd 2835 |
. 2
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) →
(vol‘𝐴) ∈
ℝ) |
| 137 | 12, 136 | impbida 800 |
1
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ+)
→ ((vol‘𝐴)
∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ)) |