Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundex Structured version   Visualization version   GIF version

Theorem pellfundex 41256
Description: The fundamental solution as an infimum is itself a solution, showing that the solution set is discrete.

Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw 41246. (Contributed by Stefan O'Rear, 18-Sep-2014.)

Assertion
Ref Expression
pellfundex (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))

Proof of Theorem pellfundex
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12235 . . . 4 2 ∈ ℝ
2 pellfundre 41251 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
3 remulcl 11144 . . . 4 ((2 ∈ ℝ ∧ (PellFund‘𝐷) ∈ ℝ) → (2 · (PellFund‘𝐷)) ∈ ℝ)
41, 2, 3sylancr 588 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (2 · (PellFund‘𝐷)) ∈ ℝ)
5 0red 11166 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ∈ ℝ)
6 1red 11164 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
7 0lt1 11685 . . . . . . . 8 0 < 1
87a1i 11 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 < 1)
9 pellfundgt1 41253 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
105, 6, 2, 8, 9lttrd 11324 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 < (PellFund‘𝐷))
112, 10elrpd 12962 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+)
122, 11ltaddrpd 12998 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) < ((PellFund‘𝐷) + (PellFund‘𝐷)))
132recnd 11191 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℂ)
14132timesd 12404 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (2 · (PellFund‘𝐷)) = ((PellFund‘𝐷) + (PellFund‘𝐷)))
1512, 14breqtrrd 5137 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) < (2 · (PellFund‘𝐷)))
16 pellfundglb 41255 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (2 · (PellFund‘𝐷)) ∈ ℝ ∧ (PellFund‘𝐷) < (2 · (PellFund‘𝐷))) → ∃𝑎 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))))
174, 15, 16mpd3an23 1464 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))))
182adantr 482 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → (PellFund‘𝐷) ∈ ℝ)
19 pell1qrss14 41238 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
2019sselda 3948 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → 𝑎 ∈ (Pell14QR‘𝐷))
21 pell14qrre 41227 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ)
2220, 21syldan 592 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → 𝑎 ∈ ℝ)
2318, 22leloed 11306 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) ≤ 𝑎 ↔ ((PellFund‘𝐷) < 𝑎 ∨ (PellFund‘𝐷) = 𝑎)))
24 simp-4l 782 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝐷 ∈ (ℕ ∖ ◻NN))
25 simp-4r 783 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 ∈ (Pell1QR‘𝐷))
26 simplr 768 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 ∈ (Pell1QR‘𝐷))
27 simprr 772 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 < 𝑎)
2822ad3antrrr 729 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 ∈ ℝ)
294ad4antr 731 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (2 · (PellFund‘𝐷)) ∈ ℝ)
3019ad4antr 731 . . . . . . . . . . . . 13 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
3130, 26sseldd 3949 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 ∈ (Pell14QR‘𝐷))
32 pell14qrre 41227 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷)) → 𝑏 ∈ ℝ)
3324, 31, 32syl2anc 585 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 ∈ ℝ)
34 remulcl 11144 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (2 · 𝑏) ∈ ℝ)
351, 33, 34sylancr 588 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (2 · 𝑏) ∈ ℝ)
36 simprr 772 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → 𝑎 < (2 · (PellFund‘𝐷)))
3736ad2antrr 725 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 < (2 · (PellFund‘𝐷)))
38 simprl 770 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (PellFund‘𝐷) ≤ 𝑏)
392ad4antr 731 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (PellFund‘𝐷) ∈ ℝ)
401a1i 11 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 2 ∈ ℝ)
41 2pos 12264 . . . . . . . . . . . . 13 0 < 2
4241a1i 11 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 0 < 2)
43 lemul2 12016 . . . . . . . . . . . 12 (((PellFund‘𝐷) ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((PellFund‘𝐷) ≤ 𝑏 ↔ (2 · (PellFund‘𝐷)) ≤ (2 · 𝑏)))
4439, 33, 40, 42, 43syl112anc 1375 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → ((PellFund‘𝐷) ≤ 𝑏 ↔ (2 · (PellFund‘𝐷)) ≤ (2 · 𝑏)))
4538, 44mpbid 231 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (2 · (PellFund‘𝐷)) ≤ (2 · 𝑏))
4628, 29, 35, 37, 45ltletrd 11323 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 < (2 · 𝑏))
47 simp1 1137 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝐷 ∈ (ℕ ∖ ◻NN))
48193ad2ant1 1134 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
49 simp2l 1200 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 ∈ (Pell1QR‘𝐷))
5048, 49sseldd 3949 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 ∈ (Pell14QR‘𝐷))
51 simp2r 1201 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ (Pell1QR‘𝐷))
5248, 51sseldd 3949 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ (Pell14QR‘𝐷))
53 pell14qrdivcl 41235 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷) ∧ 𝑏 ∈ (Pell14QR‘𝐷)) → (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷))
5447, 50, 52, 53syl3anc 1372 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷))
5547, 52, 32syl2anc 585 . . . . . . . . . . . . . 14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ ℝ)
5655recnd 11191 . . . . . . . . . . . . 13 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ ℂ)
5756mulid2d 11181 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (1 · 𝑏) = 𝑏)
58 simp3l 1202 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 < 𝑎)
5957, 58eqbrtrd 5131 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (1 · 𝑏) < 𝑎)
60 1red 11164 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 1 ∈ ℝ)
6147, 50, 21syl2anc 585 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 ∈ ℝ)
62 pell14qrgt0 41229 . . . . . . . . . . . . 13 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷)) → 0 < 𝑏)
6347, 52, 62syl2anc 585 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 0 < 𝑏)
64 ltmuldiv 12036 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 0 < 𝑏)) → ((1 · 𝑏) < 𝑎 ↔ 1 < (𝑎 / 𝑏)))
6560, 61, 55, 63, 64syl112anc 1375 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → ((1 · 𝑏) < 𝑎 ↔ 1 < (𝑎 / 𝑏)))
6659, 65mpbid 231 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 1 < (𝑎 / 𝑏))
67 simp3r 1203 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 < (2 · 𝑏))
681a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 2 ∈ ℝ)
69 ltdivmul2 12040 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 0 < 𝑏)) → ((𝑎 / 𝑏) < 2 ↔ 𝑎 < (2 · 𝑏)))
7061, 68, 55, 63, 69syl112anc 1375 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → ((𝑎 / 𝑏) < 2 ↔ 𝑎 < (2 · 𝑏)))
7167, 70mpbird 257 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (𝑎 / 𝑏) < 2)
72 simprr 772 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (𝑎 / 𝑏) < 2)
73 simpll 766 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → 𝐷 ∈ (ℕ ∖ ◻NN))
74 simplr 768 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷))
75 simprl 770 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → 1 < (𝑎 / 𝑏))
76 pell14qrgapw 41246 . . . . . . . . . . . . 13 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷) ∧ 1 < (𝑎 / 𝑏)) → 2 < (𝑎 / 𝑏))
7773, 74, 75, 76syl3anc 1372 . . . . . . . . . . . 12 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → 2 < (𝑎 / 𝑏))
78 pell14qrre 41227 . . . . . . . . . . . . . 14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) → (𝑎 / 𝑏) ∈ ℝ)
7978adantr 482 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (𝑎 / 𝑏) ∈ ℝ)
80 ltnsym 11261 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (𝑎 / 𝑏) ∈ ℝ) → (2 < (𝑎 / 𝑏) → ¬ (𝑎 / 𝑏) < 2))
811, 79, 80sylancr 588 . . . . . . . . . . . 12 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (2 < (𝑎 / 𝑏) → ¬ (𝑎 / 𝑏) < 2))
8277, 81mpd 15 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → ¬ (𝑎 / 𝑏) < 2)
8372, 82pm2.21dd 194 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
8447, 54, 66, 71, 83syl22anc 838 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
8524, 25, 26, 27, 46, 84syl122anc 1380 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
86 simpll 766 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → 𝐷 ∈ (ℕ ∖ ◻NN))
8722adantr 482 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → 𝑎 ∈ ℝ)
88 simprl 770 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → (PellFund‘𝐷) < 𝑎)
89 pellfundglb 41255 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ ℝ ∧ (PellFund‘𝐷) < 𝑎) → ∃𝑏 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎))
9086, 87, 88, 89syl3anc 1372 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → ∃𝑏 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎))
9185, 90r19.29a 3156 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
9291exp32 422 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) < 𝑎 → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
93 simp2 1138 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ (PellFund‘𝐷) = 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) = 𝑎)
94 simp1r 1199 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ (PellFund‘𝐷) = 𝑎𝑎 < (2 · (PellFund‘𝐷))) → 𝑎 ∈ (Pell1QR‘𝐷))
9593, 94eqeltrd 2834 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ (PellFund‘𝐷) = 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
96953exp 1120 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) = 𝑎 → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
9792, 96jaod 858 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → (((PellFund‘𝐷) < 𝑎 ∨ (PellFund‘𝐷) = 𝑎) → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
9823, 97sylbid 239 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) ≤ 𝑎 → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
9998impd 412 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → (((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷)))
10099rexlimdva 3149 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑎 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷)))
10117, 100mpd 15 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wrex 3070  cdif 3911  wss 3914   class class class wbr 5109  cfv 6500  (class class class)co 7361  cr 11058  0cc0 11059  1c1 11060   + caddc 11062   · cmul 11064   < clt 11197  cle 11198   / cdiv 11820  cn 12161  2c2 12216  NNcsquarenn 41206  Pell1QRcpell1qr 41207  Pell14QRcpell14qr 41209  PellFundcpellfund 41210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-inf2 9585  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-oadd 8420  df-omul 8421  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-sup 9386  df-inf 9387  df-oi 9454  df-card 9883  df-acn 9886  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-n0 12422  df-xnn0 12494  df-z 12508  df-uz 12772  df-q 12882  df-rp 12924  df-ico 13279  df-fz 13434  df-fl 13706  df-mod 13784  df-seq 13916  df-exp 13977  df-hash 14240  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-dvds 16145  df-gcd 16383  df-numer 16618  df-denom 16619  df-squarenn 41211  df-pell1qr 41212  df-pell14qr 41213  df-pell1234qr 41214  df-pellfund 41215
This theorem is referenced by:  pellfund14  41268  pellfund14b  41269
  Copyright terms: Public domain W3C validator