Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundex Structured version   Visualization version   GIF version

Theorem pellfundex 42847
Description: The fundamental solution as an infimum is itself a solution, showing that the solution set is discrete.

Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw 42837. (Contributed by Stefan O'Rear, 18-Sep-2014.)

Assertion
Ref Expression
pellfundex (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))

Proof of Theorem pellfundex
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12236 . . . 4 2 ∈ ℝ
2 pellfundre 42842 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
3 remulcl 11129 . . . 4 ((2 ∈ ℝ ∧ (PellFund‘𝐷) ∈ ℝ) → (2 · (PellFund‘𝐷)) ∈ ℝ)
41, 2, 3sylancr 587 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (2 · (PellFund‘𝐷)) ∈ ℝ)
5 0red 11153 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ∈ ℝ)
6 1red 11151 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
7 0lt1 11676 . . . . . . . 8 0 < 1
87a1i 11 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 < 1)
9 pellfundgt1 42844 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
105, 6, 2, 8, 9lttrd 11311 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 < (PellFund‘𝐷))
112, 10elrpd 12968 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+)
122, 11ltaddrpd 13004 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) < ((PellFund‘𝐷) + (PellFund‘𝐷)))
132recnd 11178 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℂ)
14132timesd 12401 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (2 · (PellFund‘𝐷)) = ((PellFund‘𝐷) + (PellFund‘𝐷)))
1512, 14breqtrrd 5130 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) < (2 · (PellFund‘𝐷)))
16 pellfundglb 42846 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (2 · (PellFund‘𝐷)) ∈ ℝ ∧ (PellFund‘𝐷) < (2 · (PellFund‘𝐷))) → ∃𝑎 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))))
174, 15, 16mpd3an23 1465 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))))
182adantr 480 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → (PellFund‘𝐷) ∈ ℝ)
19 pell1qrss14 42829 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
2019sselda 3943 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → 𝑎 ∈ (Pell14QR‘𝐷))
21 pell14qrre 42818 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ)
2220, 21syldan 591 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → 𝑎 ∈ ℝ)
2318, 22leloed 11293 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) ≤ 𝑎 ↔ ((PellFund‘𝐷) < 𝑎 ∨ (PellFund‘𝐷) = 𝑎)))
24 simp-4l 782 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝐷 ∈ (ℕ ∖ ◻NN))
25 simp-4r 783 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 ∈ (Pell1QR‘𝐷))
26 simplr 768 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 ∈ (Pell1QR‘𝐷))
27 simprr 772 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 < 𝑎)
2822ad3antrrr 730 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 ∈ ℝ)
294ad4antr 732 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (2 · (PellFund‘𝐷)) ∈ ℝ)
3019ad4antr 732 . . . . . . . . . . . . 13 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
3130, 26sseldd 3944 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 ∈ (Pell14QR‘𝐷))
32 pell14qrre 42818 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷)) → 𝑏 ∈ ℝ)
3324, 31, 32syl2anc 584 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 ∈ ℝ)
34 remulcl 11129 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (2 · 𝑏) ∈ ℝ)
351, 33, 34sylancr 587 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (2 · 𝑏) ∈ ℝ)
36 simprr 772 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → 𝑎 < (2 · (PellFund‘𝐷)))
3736ad2antrr 726 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 < (2 · (PellFund‘𝐷)))
38 simprl 770 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (PellFund‘𝐷) ≤ 𝑏)
392ad4antr 732 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (PellFund‘𝐷) ∈ ℝ)
401a1i 11 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 2 ∈ ℝ)
41 2pos 12265 . . . . . . . . . . . . 13 0 < 2
4241a1i 11 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 0 < 2)
43 lemul2 12011 . . . . . . . . . . . 12 (((PellFund‘𝐷) ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((PellFund‘𝐷) ≤ 𝑏 ↔ (2 · (PellFund‘𝐷)) ≤ (2 · 𝑏)))
4439, 33, 40, 42, 43syl112anc 1376 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → ((PellFund‘𝐷) ≤ 𝑏 ↔ (2 · (PellFund‘𝐷)) ≤ (2 · 𝑏)))
4538, 44mpbid 232 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (2 · (PellFund‘𝐷)) ≤ (2 · 𝑏))
4628, 29, 35, 37, 45ltletrd 11310 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 < (2 · 𝑏))
47 simp1 1136 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝐷 ∈ (ℕ ∖ ◻NN))
48193ad2ant1 1133 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
49 simp2l 1200 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 ∈ (Pell1QR‘𝐷))
5048, 49sseldd 3944 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 ∈ (Pell14QR‘𝐷))
51 simp2r 1201 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ (Pell1QR‘𝐷))
5248, 51sseldd 3944 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ (Pell14QR‘𝐷))
53 pell14qrdivcl 42826 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷) ∧ 𝑏 ∈ (Pell14QR‘𝐷)) → (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷))
5447, 50, 52, 53syl3anc 1373 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷))
5547, 52, 32syl2anc 584 . . . . . . . . . . . . . 14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ ℝ)
5655recnd 11178 . . . . . . . . . . . . 13 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ ℂ)
5756mullidd 11168 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (1 · 𝑏) = 𝑏)
58 simp3l 1202 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 < 𝑎)
5957, 58eqbrtrd 5124 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (1 · 𝑏) < 𝑎)
60 1red 11151 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 1 ∈ ℝ)
6147, 50, 21syl2anc 584 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 ∈ ℝ)
62 pell14qrgt0 42820 . . . . . . . . . . . . 13 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷)) → 0 < 𝑏)
6347, 52, 62syl2anc 584 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 0 < 𝑏)
64 ltmuldiv 12032 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 0 < 𝑏)) → ((1 · 𝑏) < 𝑎 ↔ 1 < (𝑎 / 𝑏)))
6560, 61, 55, 63, 64syl112anc 1376 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → ((1 · 𝑏) < 𝑎 ↔ 1 < (𝑎 / 𝑏)))
6659, 65mpbid 232 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 1 < (𝑎 / 𝑏))
67 simp3r 1203 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 < (2 · 𝑏))
681a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 2 ∈ ℝ)
69 ltdivmul2 12036 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 0 < 𝑏)) → ((𝑎 / 𝑏) < 2 ↔ 𝑎 < (2 · 𝑏)))
7061, 68, 55, 63, 69syl112anc 1376 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → ((𝑎 / 𝑏) < 2 ↔ 𝑎 < (2 · 𝑏)))
7167, 70mpbird 257 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (𝑎 / 𝑏) < 2)
72 simprr 772 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (𝑎 / 𝑏) < 2)
73 simpll 766 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → 𝐷 ∈ (ℕ ∖ ◻NN))
74 simplr 768 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷))
75 simprl 770 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → 1 < (𝑎 / 𝑏))
76 pell14qrgapw 42837 . . . . . . . . . . . . 13 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷) ∧ 1 < (𝑎 / 𝑏)) → 2 < (𝑎 / 𝑏))
7773, 74, 75, 76syl3anc 1373 . . . . . . . . . . . 12 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → 2 < (𝑎 / 𝑏))
78 pell14qrre 42818 . . . . . . . . . . . . . 14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) → (𝑎 / 𝑏) ∈ ℝ)
7978adantr 480 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (𝑎 / 𝑏) ∈ ℝ)
80 ltnsym 11248 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (𝑎 / 𝑏) ∈ ℝ) → (2 < (𝑎 / 𝑏) → ¬ (𝑎 / 𝑏) < 2))
811, 79, 80sylancr 587 . . . . . . . . . . . 12 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (2 < (𝑎 / 𝑏) → ¬ (𝑎 / 𝑏) < 2))
8277, 81mpd 15 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → ¬ (𝑎 / 𝑏) < 2)
8372, 82pm2.21dd 195 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
8447, 54, 66, 71, 83syl22anc 838 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
8524, 25, 26, 27, 46, 84syl122anc 1381 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
86 simpll 766 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → 𝐷 ∈ (ℕ ∖ ◻NN))
8722adantr 480 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → 𝑎 ∈ ℝ)
88 simprl 770 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → (PellFund‘𝐷) < 𝑎)
89 pellfundglb 42846 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ ℝ ∧ (PellFund‘𝐷) < 𝑎) → ∃𝑏 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎))
9086, 87, 88, 89syl3anc 1373 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → ∃𝑏 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎))
9185, 90r19.29a 3141 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
9291exp32 420 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) < 𝑎 → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
93 simp2 1137 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ (PellFund‘𝐷) = 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) = 𝑎)
94 simp1r 1199 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ (PellFund‘𝐷) = 𝑎𝑎 < (2 · (PellFund‘𝐷))) → 𝑎 ∈ (Pell1QR‘𝐷))
9593, 94eqeltrd 2828 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ (PellFund‘𝐷) = 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
96953exp 1119 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) = 𝑎 → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
9792, 96jaod 859 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → (((PellFund‘𝐷) < 𝑎 ∨ (PellFund‘𝐷) = 𝑎) → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
9823, 97sylbid 240 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) ≤ 𝑎 → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
9998impd 410 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → (((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷)))
10099rexlimdva 3134 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑎 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷)))
10117, 100mpd 15 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cdif 3908  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185   / cdiv 11811  cn 12162  2c2 12217  NNcsquarenn 42797  Pell1QRcpell1qr 42798  Pell14QRcpell14qr 42800  PellFundcpellfund 42801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-ico 13288  df-fz 13445  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-numer 16681  df-denom 16682  df-squarenn 42802  df-pell1qr 42803  df-pell14qr 42804  df-pell1234qr 42805  df-pellfund 42806
This theorem is referenced by:  pellfund14  42859  pellfund14b  42860
  Copyright terms: Public domain W3C validator