| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1f0 | Structured version Visualization version GIF version | ||
| Description: The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1f0 | ⊢ (ℝ × {0}) ∈ dom ∫1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11235 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 2 | 1 | fconst6 6767 | . . . 4 ⊢ (ℝ × {0}):ℝ⟶ℝ |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (ℝ × {0}):ℝ⟶ℝ) |
| 4 | snfi 9055 | . . . . 5 ⊢ {0} ∈ Fin | |
| 5 | rnxpss 6161 | . . . . 5 ⊢ ran (ℝ × {0}) ⊆ {0} | |
| 6 | ssfi 9185 | . . . . 5 ⊢ (({0} ∈ Fin ∧ ran (ℝ × {0}) ⊆ {0}) → ran (ℝ × {0}) ∈ Fin) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . 4 ⊢ ran (ℝ × {0}) ∈ Fin |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ran (ℝ × {0}) ∈ Fin) |
| 9 | difss 4111 | . . . . . . 7 ⊢ (ran (ℝ × {0}) ∖ {0}) ⊆ ran (ℝ × {0}) | |
| 10 | 9, 5 | sstri 3968 | . . . . . 6 ⊢ (ran (ℝ × {0}) ∖ {0}) ⊆ {0} |
| 11 | 10 | sseli 3954 | . . . . 5 ⊢ (𝑥 ∈ (ran (ℝ × {0}) ∖ {0}) → 𝑥 ∈ {0}) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ran (ℝ × {0}) ∖ {0})) → 𝑥 ∈ {0}) |
| 13 | eldifn 4107 | . . . . 5 ⊢ (𝑥 ∈ (ran (ℝ × {0}) ∖ {0}) → ¬ 𝑥 ∈ {0}) | |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ran (ℝ × {0}) ∖ {0})) → ¬ 𝑥 ∈ {0}) |
| 15 | 12, 14 | pm2.21dd 195 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ran (ℝ × {0}) ∖ {0})) → (◡(ℝ × {0}) “ {𝑥}) ∈ dom vol) |
| 16 | 12, 14 | pm2.21dd 195 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ran (ℝ × {0}) ∖ {0})) → (vol‘(◡(ℝ × {0}) “ {𝑥})) ∈ ℝ) |
| 17 | 3, 8, 15, 16 | i1fd 25632 | . 2 ⊢ (⊤ → (ℝ × {0}) ∈ dom ∫1) |
| 18 | 17 | mptru 1547 | 1 ⊢ (ℝ × {0}) ∈ dom ∫1 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ⊤wtru 1541 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 {csn 4601 × cxp 5652 ◡ccnv 5653 dom cdm 5654 ran crn 5655 “ cima 5657 ⟶wf 6526 ‘cfv 6530 Fincfn 8957 ℝcr 11126 0cc0 11127 volcvol 25414 ∫1citg1 25566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-oi 9522 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-xadd 13127 df-ioo 13364 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-sum 15701 df-xmet 21306 df-met 21307 df-ovol 25415 df-vol 25416 df-mbf 25570 df-itg1 25571 |
| This theorem is referenced by: itg10 25639 i1fmulc 25654 itg2ge0 25686 itg20 25688 itg2addnclem 37641 itg2addnc 37644 ftc1anclem8 37670 |
| Copyright terms: Public domain | W3C validator |