![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1f0 | Structured version Visualization version GIF version |
Description: The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
i1f0 | ⊢ (ℝ × {0}) ∈ dom ∫1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11240 | . . . . 5 ⊢ 0 ∈ ℝ | |
2 | 1 | fconst6 6781 | . . . 4 ⊢ (ℝ × {0}):ℝ⟶ℝ |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (ℝ × {0}):ℝ⟶ℝ) |
4 | snfi 9062 | . . . . 5 ⊢ {0} ∈ Fin | |
5 | rnxpss 6170 | . . . . 5 ⊢ ran (ℝ × {0}) ⊆ {0} | |
6 | ssfi 9191 | . . . . 5 ⊢ (({0} ∈ Fin ∧ ran (ℝ × {0}) ⊆ {0}) → ran (ℝ × {0}) ∈ Fin) | |
7 | 4, 5, 6 | mp2an 691 | . . . 4 ⊢ ran (ℝ × {0}) ∈ Fin |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ran (ℝ × {0}) ∈ Fin) |
9 | difss 4127 | . . . . . . 7 ⊢ (ran (ℝ × {0}) ∖ {0}) ⊆ ran (ℝ × {0}) | |
10 | 9, 5 | sstri 3987 | . . . . . 6 ⊢ (ran (ℝ × {0}) ∖ {0}) ⊆ {0} |
11 | 10 | sseli 3974 | . . . . 5 ⊢ (𝑥 ∈ (ran (ℝ × {0}) ∖ {0}) → 𝑥 ∈ {0}) |
12 | 11 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ran (ℝ × {0}) ∖ {0})) → 𝑥 ∈ {0}) |
13 | eldifn 4123 | . . . . 5 ⊢ (𝑥 ∈ (ran (ℝ × {0}) ∖ {0}) → ¬ 𝑥 ∈ {0}) | |
14 | 13 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ran (ℝ × {0}) ∖ {0})) → ¬ 𝑥 ∈ {0}) |
15 | 12, 14 | pm2.21dd 194 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ran (ℝ × {0}) ∖ {0})) → (◡(ℝ × {0}) “ {𝑥}) ∈ dom vol) |
16 | 12, 14 | pm2.21dd 194 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ran (ℝ × {0}) ∖ {0})) → (vol‘(◡(ℝ × {0}) “ {𝑥})) ∈ ℝ) |
17 | 3, 8, 15, 16 | i1fd 25603 | . 2 ⊢ (⊤ → (ℝ × {0}) ∈ dom ∫1) |
18 | 17 | mptru 1541 | 1 ⊢ (ℝ × {0}) ∈ dom ∫1 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ⊤wtru 1535 ∈ wcel 2099 ∖ cdif 3942 ⊆ wss 3945 {csn 4624 × cxp 5670 ◡ccnv 5671 dom cdm 5672 ran crn 5673 “ cima 5675 ⟶wf 6538 ‘cfv 6542 Fincfn 8957 ℝcr 11131 0cc0 11132 volcvol 25385 ∫1citg1 25537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-oi 9527 df-dju 9918 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-q 12957 df-rp 13001 df-xadd 13119 df-ioo 13354 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-fl 13783 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15458 df-sum 15659 df-xmet 21265 df-met 21266 df-ovol 25386 df-vol 25387 df-mbf 25541 df-itg1 25542 |
This theorem is referenced by: itg10 25610 i1fmulc 25626 itg2ge0 25658 itg20 25660 itg2addnclem 37138 itg2addnc 37141 ftc1anclem8 37167 |
Copyright terms: Public domain | W3C validator |