| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1f0 | Structured version Visualization version GIF version | ||
| Description: The zero function is simple. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1f0 | ⊢ (ℝ × {0}) ∈ dom ∫1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11111 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 2 | 1 | fconst6 6713 | . . . 4 ⊢ (ℝ × {0}):ℝ⟶ℝ |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → (ℝ × {0}):ℝ⟶ℝ) |
| 4 | snfi 8965 | . . . . 5 ⊢ {0} ∈ Fin | |
| 5 | rnxpss 6119 | . . . . 5 ⊢ ran (ℝ × {0}) ⊆ {0} | |
| 6 | ssfi 9082 | . . . . 5 ⊢ (({0} ∈ Fin ∧ ran (ℝ × {0}) ⊆ {0}) → ran (ℝ × {0}) ∈ Fin) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . 4 ⊢ ran (ℝ × {0}) ∈ Fin |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ran (ℝ × {0}) ∈ Fin) |
| 9 | difss 4086 | . . . . . . 7 ⊢ (ran (ℝ × {0}) ∖ {0}) ⊆ ran (ℝ × {0}) | |
| 10 | 9, 5 | sstri 3944 | . . . . . 6 ⊢ (ran (ℝ × {0}) ∖ {0}) ⊆ {0} |
| 11 | 10 | sseli 3930 | . . . . 5 ⊢ (𝑥 ∈ (ran (ℝ × {0}) ∖ {0}) → 𝑥 ∈ {0}) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ran (ℝ × {0}) ∖ {0})) → 𝑥 ∈ {0}) |
| 13 | eldifn 4082 | . . . . 5 ⊢ (𝑥 ∈ (ran (ℝ × {0}) ∖ {0}) → ¬ 𝑥 ∈ {0}) | |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ran (ℝ × {0}) ∖ {0})) → ¬ 𝑥 ∈ {0}) |
| 15 | 12, 14 | pm2.21dd 195 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ran (ℝ × {0}) ∖ {0})) → (◡(ℝ × {0}) “ {𝑥}) ∈ dom vol) |
| 16 | 12, 14 | pm2.21dd 195 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ran (ℝ × {0}) ∖ {0})) → (vol‘(◡(ℝ × {0}) “ {𝑥})) ∈ ℝ) |
| 17 | 3, 8, 15, 16 | i1fd 25607 | . 2 ⊢ (⊤ → (ℝ × {0}) ∈ dom ∫1) |
| 18 | 17 | mptru 1548 | 1 ⊢ (ℝ × {0}) ∈ dom ∫1 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ⊤wtru 1542 ∈ wcel 2111 ∖ cdif 3899 ⊆ wss 3902 {csn 4576 × cxp 5614 ◡ccnv 5615 dom cdm 5616 ran crn 5617 “ cima 5619 ⟶wf 6477 ‘cfv 6481 Fincfn 8869 ℝcr 11002 0cc0 11003 volcvol 25389 ∫1citg1 25541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xadd 13009 df-ioo 13246 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 df-xmet 21282 df-met 21283 df-ovol 25390 df-vol 25391 df-mbf 25545 df-itg1 25546 |
| This theorem is referenced by: itg10 25614 i1fmulc 25629 itg2ge0 25661 itg20 25663 itg2addnclem 37710 itg2addnc 37713 ftc1anclem8 37739 |
| Copyright terms: Public domain | W3C validator |