Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p8 Structured version   Visualization version   GIF version

Theorem aks4d1p8 42069
Description: Show that 𝑁 and 𝑅 are coprime for AKS existence theorem, with eliminated hypothesis. (Contributed by metakunt, 10-Nov-2024.) (Proof sketch by Thierry Arnoux.)
Hypotheses
Ref Expression
aks4d1p8.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p8.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p8.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p8.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
Assertion
Ref Expression
aks4d1p8 (𝜑 → (𝑁 gcd 𝑅) = 1)
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝑁,𝑟   𝑅,𝑘   𝑅,𝑟   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem aks4d1p8
Dummy variables 𝑝 𝑦 𝑥 𝑜 𝑓 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks4d1p8.1 . 2 (𝜑𝑁 ∈ (ℤ‘3))
2 aks4d1p8.2 . 2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
3 aks4d1p8.3 . 2 𝐵 = (⌈‘((2 logb 𝑁)↑5))
4 aks4d1p8.4 . 2 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
54a1i 11 . . . . . 6 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ))
6 ssrab2 4039 . . . . . . . . . . . . 13 {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵)
76a1i 11 . . . . . . . . . . . 12 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵))
8 elfznn 13492 . . . . . . . . . . . . . . . 16 (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℕ)
98adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℕ)
109nnred 12179 . . . . . . . . . . . . . 14 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℝ)
1110ex 412 . . . . . . . . . . . . 13 (𝜑 → (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℝ))
1211ssrdv 3949 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ⊆ ℝ)
137, 12sstrd 3954 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
1413adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
1514adantr 480 . . . . . . . . 9 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
1615adantr 480 . . . . . . . 8 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
1716adantr 480 . . . . . . 7 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
18 fzfid 13916 . . . . . . . . . . . . 13 (𝜑 → (1...𝐵) ∈ Fin)
1918, 7ssfid 9188 . . . . . . . . . . . 12 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
201, 2, 3aks4d1p3 42060 . . . . . . . . . . . . 13 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
21 rabn0 4348 . . . . . . . . . . . . 13 ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅ ↔ ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
2220, 21sylibr 234 . . . . . . . . . . . 12 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
23 fiminre 12108 . . . . . . . . . . . 12 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
2413, 19, 22, 23syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
2524adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
2625adantr 480 . . . . . . . . 9 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
2726adantr 480 . . . . . . . 8 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
2827adantr 480 . . . . . . 7 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦)
29 breq1 5105 . . . . . . . . 9 (𝑟 = (𝑅 / 𝑝) → (𝑟𝐴 ↔ (𝑅 / 𝑝) ∥ 𝐴))
3029notbid 318 . . . . . . . 8 (𝑟 = (𝑅 / 𝑝) → (¬ 𝑟𝐴 ↔ ¬ (𝑅 / 𝑝) ∥ 𝐴))
31 1zzd 12542 . . . . . . . . 9 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 1 ∈ ℤ)
323a1i 11 . . . . . . . . . . 11 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
33 2re 12238 . . . . . . . . . . . . . . 15 2 ∈ ℝ
3433a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ)
35 2pos 12267 . . . . . . . . . . . . . . 15 0 < 2
3635a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 2)
37 eluzelz 12781 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
381, 37syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
3938zred 12616 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
40 0red 11155 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
41 3re 12244 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
4241a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ ℝ)
43 3pos 12269 . . . . . . . . . . . . . . . 16 0 < 3
4443a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 3)
45 eluzle 12784 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
461, 45syl 17 . . . . . . . . . . . . . . 15 (𝜑 → 3 ≤ 𝑁)
4740, 42, 39, 44, 46ltletrd 11312 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
48 1red 11153 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
49 1lt2 12330 . . . . . . . . . . . . . . . . 17 1 < 2
5049a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
5148, 50ltned 11288 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≠ 2)
5251necomd 2980 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 1)
5334, 36, 39, 47, 52relogbcld 41955 . . . . . . . . . . . . 13 (𝜑 → (2 logb 𝑁) ∈ ℝ)
54 5nn0 12440 . . . . . . . . . . . . . 14 5 ∈ ℕ0
5554a1i 11 . . . . . . . . . . . . 13 (𝜑 → 5 ∈ ℕ0)
5653, 55reexpcld 14106 . . . . . . . . . . . 12 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
5756ceilcld 13783 . . . . . . . . . . 11 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
5832, 57eqeltrd 2828 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
5958ad4antr 732 . . . . . . . . 9 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝐵 ∈ ℤ)
60 simplrl 776 . . . . . . . . . 10 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑝𝑅)
61 prmnn 16621 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
6261adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
6362ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑝 ∈ ℕ)
6463nnzd 12534 . . . . . . . . . . 11 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑝 ∈ ℤ)
6562nnne0d 12214 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝑝 ≠ 0)
6665ad2antrr 726 . . . . . . . . . . 11 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑝 ≠ 0)
671, 2, 3, 4aks4d1p4 42061 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
6867simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ (1...𝐵))
69 elfznn 13492 . . . . . . . . . . . . . . . 16 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
7068, 69syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℕ)
7170ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑅) ∧ ¬ 𝑝𝑁) → 𝑅 ∈ ℕ)
7271adantr 480 . . . . . . . . . . . . 13 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑅) ∧ ¬ 𝑝𝑁) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑅 ∈ ℕ)
7372nnzd 12534 . . . . . . . . . . . 12 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑅) ∧ ¬ 𝑝𝑁) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑅 ∈ ℤ)
74 anass 468 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑅) ∧ ¬ 𝑝𝑁) ↔ (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)))
7574anbi1i 624 . . . . . . . . . . . . 13 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑅) ∧ ¬ 𝑝𝑁) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) ↔ ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴))
7675imbi1i 349 . . . . . . . . . . . 12 (((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑅) ∧ ¬ 𝑝𝑁) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑅 ∈ ℤ) ↔ (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑅 ∈ ℤ))
7773, 76mpbi 230 . . . . . . . . . . 11 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑅 ∈ ℤ)
78 dvdsval2 16202 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝑝 ≠ 0 ∧ 𝑅 ∈ ℤ) → (𝑝𝑅 ↔ (𝑅 / 𝑝) ∈ ℤ))
7964, 66, 77, 78syl3anc 1373 . . . . . . . . . 10 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (𝑝𝑅 ↔ (𝑅 / 𝑝) ∈ ℤ))
8060, 79mpbid 232 . . . . . . . . 9 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (𝑅 / 𝑝) ∈ ℤ)
8163nncnd 12180 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑝 ∈ ℂ)
8281mullidd 11170 . . . . . . . . . . 11 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (1 · 𝑝) = 𝑝)
8375, 72sylbir 235 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑅 ∈ ℕ)
8464, 83jca 511 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (𝑝 ∈ ℤ ∧ 𝑅 ∈ ℕ))
85 dvdsle 16257 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝑅 ∈ ℕ) → (𝑝𝑅𝑝𝑅))
8685imp 406 . . . . . . . . . . . 12 (((𝑝 ∈ ℤ ∧ 𝑅 ∈ ℕ) ∧ 𝑝𝑅) → 𝑝𝑅)
8784, 60, 86syl2anc 584 . . . . . . . . . . 11 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑝𝑅)
8882, 87eqbrtrd 5124 . . . . . . . . . 10 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (1 · 𝑝) ≤ 𝑅)
89 1red 11153 . . . . . . . . . . 11 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 1 ∈ ℝ)
9070nnred 12179 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ)
9190adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ)
9291adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝑅 ∈ ℝ)
9392adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑅 ∈ ℝ)
9493adantr 480 . . . . . . . . . . 11 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑅 ∈ ℝ)
9563nnrpd 12971 . . . . . . . . . . 11 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑝 ∈ ℝ+)
9689, 94, 95lemuldivd 13022 . . . . . . . . . 10 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ((1 · 𝑝) ≤ 𝑅 ↔ 1 ≤ (𝑅 / 𝑝)))
9788, 96mpbid 232 . . . . . . . . 9 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 1 ≤ (𝑅 / 𝑝))
9890ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝑅 ∈ ℝ)
9958ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
10099zred 12616 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℝ)
10162nnred 12179 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ)
102100, 101remulcld 11182 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → (𝐵 · 𝑝) ∈ ℝ)
103 elfzle2 13467 . . . . . . . . . . . . . . . 16 (𝑅 ∈ (1...𝐵) → 𝑅𝐵)
10468, 103syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅𝐵)
105104adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅𝐵)
106105adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝑅𝐵)
10758zred 12616 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
108 9re 12263 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℝ
109108a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 ∈ ℝ)
110 9pos 12277 . . . . . . . . . . . . . . . . . . 19 0 < 9
111110a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 9)
11232, 107eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
11339, 463lexlogpow5ineq4 42038 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 9 < ((2 logb 𝑁)↑5))
11456ceilged 13786 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
115109, 56, 112, 113, 114ltletrd 11312 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 9 < (⌈‘((2 logb 𝑁)↑5)))
116115, 32breqtrrd 5130 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 < 𝐵)
11740, 109, 107, 111, 116lttrd 11313 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝐵)
11840, 107, 117ltled 11300 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 𝐵)
119118adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 0 ≤ 𝐵)
120119adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 0 ≤ 𝐵)
12162nnge1d 12212 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 1 ≤ 𝑝)
122100, 101, 120, 121lemulge11d 12098 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝐵 ≤ (𝐵 · 𝑝))
12398, 100, 102, 106, 122letrd 11309 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝑅 ≤ (𝐵 · 𝑝))
12462nnrpd 12971 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ+)
12598, 100, 124ledivmul2d 13027 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → ((𝑅 / 𝑝) ≤ 𝐵𝑅 ≤ (𝐵 · 𝑝)))
126123, 125mpbird 257 . . . . . . . . . . 11 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → (𝑅 / 𝑝) ≤ 𝐵)
127126adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑅 / 𝑝) ≤ 𝐵)
128127adantr 480 . . . . . . . . 9 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (𝑅 / 𝑝) ≤ 𝐵)
12931, 59, 80, 97, 128elfzd 13454 . . . . . . . 8 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (𝑅 / 𝑝) ∈ (1...𝐵))
13093recnd 11180 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑅 ∈ ℂ)
13162adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑝 ∈ ℕ)
132131nnzd 12534 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑝 ∈ ℤ)
133 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑝 ∈ ℙ)
13471anasss 466 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑅 ∈ ℕ)
135133, 134pccld 16798 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt 𝑅) ∈ ℕ0)
136132, 135zexpcld 14030 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑(𝑝 pCnt 𝑅)) ∈ ℤ)
137136zcnd 12617 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑(𝑝 pCnt 𝑅)) ∈ ℂ)
138131nncnd 12180 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑝 ∈ ℂ)
13965adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑝 ≠ 0)
140135nn0zd 12533 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt 𝑅) ∈ ℤ)
141138, 139, 140expne0d 14095 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑(𝑝 pCnt 𝑅)) ≠ 0)
142130, 137, 141divcan1d 11937 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) · (𝑝↑(𝑝 pCnt 𝑅))) = 𝑅)
143142eqcomd 2735 . . . . . . . . . . 11 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑅 = ((𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) · (𝑝↑(𝑝 pCnt 𝑅))))
144 pcdvds 16812 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑅 ∈ ℕ) → (𝑝↑(𝑝 pCnt 𝑅)) ∥ 𝑅)
145133, 134, 144syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑(𝑝 pCnt 𝑅)) ∥ 𝑅)
146134nnzd 12534 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑅 ∈ ℤ)
147 dvdsval2 16202 . . . . . . . . . . . . . 14 (((𝑝↑(𝑝 pCnt 𝑅)) ∈ ℤ ∧ (𝑝↑(𝑝 pCnt 𝑅)) ≠ 0 ∧ 𝑅 ∈ ℤ) → ((𝑝↑(𝑝 pCnt 𝑅)) ∥ 𝑅 ↔ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ ℤ))
148136, 141, 146, 147syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑝↑(𝑝 pCnt 𝑅)) ∥ 𝑅 ↔ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ ℤ))
149145, 148mpbid 232 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ ℤ)
15038, 47jca 511 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 ∈ ℤ ∧ 0 < 𝑁))
151 elnnz 12517 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
152151a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)))
153150, 152mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ)
154153nnzd 12534 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℤ)
15534, 36, 107, 117, 52relogbcld 41955 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2 logb 𝐵) ∈ ℝ)
156155flcld 13738 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
15734recnd 11180 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 2 ∈ ℂ)
15840, 36gtned 11287 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 2 ≠ 0)
159 logb1 26713 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
160157, 158, 52, 159syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 logb 1) = 0)
161160eqcomd 2735 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 = (2 logb 1))
162 2z 12543 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℤ
163162a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ∈ ℤ)
16434leidd 11722 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ≤ 2)
165 0lt1 11678 . . . . . . . . . . . . . . . . . . . . . 22 0 < 1
166165a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 < 1)
167 1lt9 12365 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 9
168167a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 9)
16948, 109, 107, 168, 116lttrd 11313 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 < 𝐵)
17048, 107, 169ltled 11300 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐵)
171163, 164, 48, 166, 107, 117, 170logblebd 41958 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 logb 1) ≤ (2 logb 𝐵))
172161, 171eqbrtrd 5124 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (2 logb 𝐵))
173 0zd 12519 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ∈ ℤ)
174 flge 13745 . . . . . . . . . . . . . . . . . . . 20 (((2 logb 𝐵) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
175155, 173, 174syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
176172, 175mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
177156, 176jca 511 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
178 elnn0z 12520 . . . . . . . . . . . . . . . . . 18 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
179178a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵)))))
180177, 179mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
181154, 180zexpcld 14030 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ)
182 fzfid 13916 . . . . . . . . . . . . . . . 16 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
183154adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
184 elfznn 13492 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
185184adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
186185nnnn0d 12481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
187183, 186zexpcld 14030 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℤ)
188 1zzd 12542 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
189187, 188zsubcld 12621 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℤ)
190182, 189fprodzcl 15897 . . . . . . . . . . . . . . 15 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℤ)
191181, 190zmulcld 12622 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℤ)
1922a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
193192eleq1d 2813 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 ∈ ℤ ↔ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℤ))
194191, 193mpbird 257 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℤ)
195194ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝐴 ∈ ℤ)
196 simprl 770 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑝𝑅)
197134, 133, 196aks4d1p8d3 42068 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) gcd (𝑝↑(𝑝 pCnt 𝑅))) = 1)
198138exp0d 14083 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑0) = 1)
199 pcelnn 16818 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℙ ∧ 𝑅 ∈ ℕ) → ((𝑝 pCnt 𝑅) ∈ ℕ ↔ 𝑝𝑅))
200133, 134, 199syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑝 pCnt 𝑅) ∈ ℕ ↔ 𝑝𝑅))
201196, 200mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝 pCnt 𝑅) ∈ ℕ)
202201nngt0d 12213 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 0 < (𝑝 pCnt 𝑅))
203101adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑝 ∈ ℝ)
204173ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 0 ∈ ℤ)
205 prmgt1 16644 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℙ → 1 < 𝑝)
206205adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 1 < 𝑝)
207206adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 1 < 𝑝)
208203, 204, 140, 207ltexp2d 14194 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (0 < (𝑝 pCnt 𝑅) ↔ (𝑝↑0) < (𝑝↑(𝑝 pCnt 𝑅))))
209202, 208mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑0) < (𝑝↑(𝑝 pCnt 𝑅)))
210198, 209eqbrtrrd 5126 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 1 < (𝑝↑(𝑝 pCnt 𝑅)))
211136zred 12616 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑(𝑝 pCnt 𝑅)) ∈ ℝ)
21270nnrpd 12971 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑅 ∈ ℝ+)
213212adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑅 ∈ ℝ+)
214213adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝑅 ∈ ℝ+)
215214adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑅 ∈ ℝ+)
216211, 215ltmulgt11d 13008 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (1 < (𝑝↑(𝑝 pCnt 𝑅)) ↔ 𝑅 < (𝑅 · (𝑝↑(𝑝 pCnt 𝑅)))))
217210, 216mpbid 232 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑅 < (𝑅 · (𝑝↑(𝑝 pCnt 𝑅))))
218124adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑝 ∈ ℝ+)
219218, 140rpexpcld 14190 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑(𝑝 pCnt 𝑅)) ∈ ℝ+)
22093, 93, 219ltdivmul2d 13025 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) < 𝑅𝑅 < (𝑅 · (𝑝↑(𝑝 pCnt 𝑅)))))
221217, 220mpbird 257 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) < 𝑅)
22293, 211, 141redivcld 11988 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ ℝ)
223222, 93ltnled 11299 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅)))))
224221, 223mpbid 232 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ¬ 𝑅 ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))))
2254a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ))
226225breq1d 5112 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑅 ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ↔ inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅)))))
227226notbid 318 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (¬ 𝑅 ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ↔ ¬ inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅)))))
228224, 227mpbid 232 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ¬ inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))))
229 elfznn 13492 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ (1...𝐵) → 𝑓 ∈ ℕ)
230229adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓 ∈ (1...𝐵)) → 𝑓 ∈ ℕ)
231230nnred 12179 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑓 ∈ (1...𝐵)) → 𝑓 ∈ ℝ)
232231ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑓 ∈ (1...𝐵) → 𝑓 ∈ ℝ))
233232ssrdv 3949 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...𝐵) ⊆ ℝ)
2347, 233sstrd 3954 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
235234adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
236235adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
237236adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
23819adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
239238adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
240239adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
241 infrefilb 12147 . . . . . . . . . . . . . . . . . 18 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin ∧ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))))
2422413expa 1118 . . . . . . . . . . . . . . . . 17 ((({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin) ∧ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))))
243242ex 412 . . . . . . . . . . . . . . . 16 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin) → ((𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅)))))
244243con3d 152 . . . . . . . . . . . . . . 15 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin) → (¬ inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) → ¬ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}))
245237, 240, 244syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (¬ inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) → ¬ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}))
246228, 245mpd 15 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ¬ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
247 1zzd 12542 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 1 ∈ ℤ)
24899adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝐵 ∈ ℤ)
249137mullidd 11170 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (1 · (𝑝↑(𝑝 pCnt 𝑅))) = (𝑝↑(𝑝 pCnt 𝑅)))
250 dvdsle 16257 . . . . . . . . . . . . . . . . . . 19 (((𝑝↑(𝑝 pCnt 𝑅)) ∈ ℤ ∧ 𝑅 ∈ ℕ) → ((𝑝↑(𝑝 pCnt 𝑅)) ∥ 𝑅 → (𝑝↑(𝑝 pCnt 𝑅)) ≤ 𝑅))
251136, 134, 250syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑝↑(𝑝 pCnt 𝑅)) ∥ 𝑅 → (𝑝↑(𝑝 pCnt 𝑅)) ≤ 𝑅))
252145, 251mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑(𝑝 pCnt 𝑅)) ≤ 𝑅)
253249, 252eqbrtrd 5124 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (1 · (𝑝↑(𝑝 pCnt 𝑅))) ≤ 𝑅)
25448adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 ∈ ℝ)
255254ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 1 ∈ ℝ)
256255, 93, 219lemuldivd 13022 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((1 · (𝑝↑(𝑝 pCnt 𝑅))) ≤ 𝑅 ↔ 1 ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅)))))
257253, 256mpbid 232 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 1 ≤ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))))
258100adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝐵 ∈ ℝ)
259121adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 1 ≤ 𝑝)
260203, 135, 259expge1d 14108 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 1 ≤ (𝑝↑(𝑝 pCnt 𝑅)))
261 nnledivrp 13043 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℕ ∧ (𝑝↑(𝑝 pCnt 𝑅)) ∈ ℝ+) → (1 ≤ (𝑝↑(𝑝 pCnt 𝑅)) ↔ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ≤ 𝑅))
262134, 219, 261syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (1 ≤ (𝑝↑(𝑝 pCnt 𝑅)) ↔ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ≤ 𝑅))
263260, 262mpbid 232 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ≤ 𝑅)
264106adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑅𝐵)
265222, 93, 258, 263, 264letrd 11309 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ≤ 𝐵)
266247, 248, 149, 257, 265elfzd 13454 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ (1...𝐵))
267 breq1 5105 . . . . . . . . . . . . . . . . 17 (𝑟 = (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) → (𝑟𝐴 ↔ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∥ 𝐴))
268267notbid 318 . . . . . . . . . . . . . . . 16 (𝑟 = (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) → (¬ 𝑟𝐴 ↔ ¬ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∥ 𝐴))
269268elrab3 3657 . . . . . . . . . . . . . . 15 ((𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ (1...𝐵) → ((𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ↔ ¬ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∥ 𝐴))
270269con2bid 354 . . . . . . . . . . . . . 14 ((𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ (1...𝐵) → ((𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∥ 𝐴 ↔ ¬ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}))
271266, 270syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∥ 𝐴 ↔ ¬ (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}))
272246, 271mpbird 257 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) ∥ 𝐴)
273134ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ 𝑞 ∈ ℙ) ∧ (𝑞𝑁𝑞𝑅)) → 𝑅 ∈ ℕ)
274153adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 𝑁 ∈ ℕ)
275274adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
276275adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑅) → 𝑁 ∈ ℕ)
277276adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑅) ∧ ¬ 𝑝𝑁) → 𝑁 ∈ ℕ)
27874, 277sylbir 235 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑁 ∈ ℕ)
279278ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ 𝑞 ∈ ℙ) ∧ (𝑞𝑁𝑞𝑅)) → 𝑁 ∈ ℕ)
280133ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ 𝑞 ∈ ℙ) ∧ (𝑞𝑁𝑞𝑅)) → 𝑝 ∈ ℙ)
281 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ 𝑞 ∈ ℙ) ∧ (𝑞𝑁𝑞𝑅)) → 𝑞 ∈ ℙ)
282196ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ 𝑞 ∈ ℙ) ∧ (𝑞𝑁𝑞𝑅)) → 𝑝𝑅)
283 simprr 772 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ 𝑞 ∈ ℙ) ∧ (𝑞𝑁𝑞𝑅)) → 𝑞𝑅)
284 simplrr 777 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ 𝑞 ∈ ℙ) → ¬ 𝑝𝑁)
285284adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ 𝑞 ∈ ℙ) ∧ (𝑞𝑁𝑞𝑅)) → ¬ 𝑝𝑁)
286 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ 𝑞 ∈ ℙ) ∧ (𝑞𝑁𝑞𝑅)) → 𝑞𝑁)
287273, 279, 280, 281, 282, 283, 285, 286aks4d1p8d2 42067 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ 𝑞 ∈ ℙ) ∧ (𝑞𝑁𝑞𝑅)) → (𝑝↑(𝑝 pCnt 𝑅)) < 𝑅)
288 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → 1 < (𝑁 gcd 𝑅))
289288ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 1 < (𝑁 gcd 𝑅))
290255, 289ltned 11288 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 1 ≠ (𝑁 gcd 𝑅))
291290necomd 2980 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑁 gcd 𝑅) ≠ 1)
292278, 134prmdvdsncoprmbd 16674 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (∃𝑞 ∈ ℙ (𝑞𝑁𝑞𝑅) ↔ (𝑁 gcd 𝑅) ≠ 1))
293292bicomd 223 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑁 gcd 𝑅) ≠ 1 ↔ ∃𝑞 ∈ ℙ (𝑞𝑁𝑞𝑅)))
294293biimpd 229 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑁 gcd 𝑅) ≠ 1 → ∃𝑞 ∈ ℙ (𝑞𝑁𝑞𝑅)))
295291, 294mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ∃𝑞 ∈ ℙ (𝑞𝑁𝑞𝑅))
296287, 295r19.29a 3141 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑(𝑝 pCnt 𝑅)) < 𝑅)
297211, 93ltnled 11299 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑝↑(𝑝 pCnt 𝑅)) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑝↑(𝑝 pCnt 𝑅))))
298296, 297mpbid 232 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ¬ 𝑅 ≤ (𝑝↑(𝑝 pCnt 𝑅)))
299225breq1d 5112 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑅 ≤ (𝑝↑(𝑝 pCnt 𝑅)) ↔ inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑝↑(𝑝 pCnt 𝑅))))
300299notbid 318 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (¬ 𝑅 ≤ (𝑝↑(𝑝 pCnt 𝑅)) ↔ ¬ inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑝↑(𝑝 pCnt 𝑅))))
301298, 300mpbid 232 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ¬ inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑝↑(𝑝 pCnt 𝑅)))
302 infrefilb 12147 . . . . . . . . . . . . . . . . . 18 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin ∧ (𝑝↑(𝑝 pCnt 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑝↑(𝑝 pCnt 𝑅)))
3033023expa 1118 . . . . . . . . . . . . . . . . 17 ((({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin) ∧ (𝑝↑(𝑝 pCnt 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑝↑(𝑝 pCnt 𝑅)))
304303ex 412 . . . . . . . . . . . . . . . 16 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin) → ((𝑝↑(𝑝 pCnt 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑝↑(𝑝 pCnt 𝑅))))
305304con3d 152 . . . . . . . . . . . . . . 15 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin) → (¬ inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑝↑(𝑝 pCnt 𝑅)) → ¬ (𝑝↑(𝑝 pCnt 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}))
306237, 240, 305syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (¬ inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑝↑(𝑝 pCnt 𝑅)) → ¬ (𝑝↑(𝑝 pCnt 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}))
307301, 306mpd 15 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ¬ (𝑝↑(𝑝 pCnt 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
308211, 93, 258, 252, 264letrd 11309 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑(𝑝 pCnt 𝑅)) ≤ 𝐵)
309247, 248, 136, 260, 308elfzd 13454 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑(𝑝 pCnt 𝑅)) ∈ (1...𝐵))
310 breq1 5105 . . . . . . . . . . . . . . . . 17 (𝑟 = (𝑝↑(𝑝 pCnt 𝑅)) → (𝑟𝐴 ↔ (𝑝↑(𝑝 pCnt 𝑅)) ∥ 𝐴))
311310notbid 318 . . . . . . . . . . . . . . . 16 (𝑟 = (𝑝↑(𝑝 pCnt 𝑅)) → (¬ 𝑟𝐴 ↔ ¬ (𝑝↑(𝑝 pCnt 𝑅)) ∥ 𝐴))
312311elrab3 3657 . . . . . . . . . . . . . . 15 ((𝑝↑(𝑝 pCnt 𝑅)) ∈ (1...𝐵) → ((𝑝↑(𝑝 pCnt 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ↔ ¬ (𝑝↑(𝑝 pCnt 𝑅)) ∥ 𝐴))
313309, 312syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑝↑(𝑝 pCnt 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ↔ ¬ (𝑝↑(𝑝 pCnt 𝑅)) ∥ 𝐴))
314313con2bid 354 . . . . . . . . . . . . 13 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑝↑(𝑝 pCnt 𝑅)) ∥ 𝐴 ↔ ¬ (𝑝↑(𝑝 pCnt 𝑅)) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}))
315307, 314mpbird 257 . . . . . . . . . . . 12 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑝↑(𝑝 pCnt 𝑅)) ∥ 𝐴)
316149, 136, 195, 197, 272, 315coprmdvds2d 41983 . . . . . . . . . . 11 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ((𝑅 / (𝑝↑(𝑝 pCnt 𝑅))) · (𝑝↑(𝑝 pCnt 𝑅))) ∥ 𝐴)
317143, 316eqbrtrd 5124 . . . . . . . . . 10 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → 𝑅𝐴)
318317adantr 480 . . . . . . . . 9 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑅𝐴)
31967simprd 495 . . . . . . . . . . 11 (𝜑 → ¬ 𝑅𝐴)
320319ad5antr 734 . . . . . . . . . 10 ((((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑅) ∧ ¬ 𝑝𝑁) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ 𝑅𝐴)
32175, 320sylbir 235 . . . . . . . . 9 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ 𝑅𝐴)
322318, 321pm2.21dd 195 . . . . . . . 8 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / 𝑝) ∥ 𝐴)
32330, 129, 322elrabd 3658 . . . . . . 7 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (𝑅 / 𝑝) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
324 lbinfle 12116 . . . . . . 7 (({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ ∧ ∃𝑥 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}∀𝑦 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}𝑥𝑦 ∧ (𝑅 / 𝑝) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / 𝑝))
32517, 28, 323, 324syl3anc 1373 . . . . . 6 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ≤ (𝑅 / 𝑝))
3265, 325eqbrtrd 5124 . . . . 5 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑅 ≤ (𝑅 / 𝑝))
327207adantr 480 . . . . . . . 8 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 1 < 𝑝)
328 1rp 12933 . . . . . . . . . 10 1 ∈ ℝ+
329328a1i 11 . . . . . . . . 9 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 1 ∈ ℝ+)
330215adantr 480 . . . . . . . . 9 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑅 ∈ ℝ+)
331329, 95, 330ltdiv2d 12996 . . . . . . . 8 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (1 < 𝑝 ↔ (𝑅 / 𝑝) < (𝑅 / 1)))
332327, 331mpbid 232 . . . . . . 7 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (𝑅 / 𝑝) < (𝑅 / 1))
333130adantr 480 . . . . . . . 8 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → 𝑅 ∈ ℂ)
334333div1d 11928 . . . . . . 7 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (𝑅 / 1) = 𝑅)
335332, 334breqtrd 5128 . . . . . 6 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (𝑅 / 𝑝) < 𝑅)
33698, 101, 65redivcld 11988 . . . . . . . . 9 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) → (𝑅 / 𝑝) ∈ ℝ)
337336adantr 480 . . . . . . . 8 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → (𝑅 / 𝑝) ∈ ℝ)
338337adantr 480 . . . . . . 7 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → (𝑅 / 𝑝) ∈ ℝ)
339338, 94ltnled 11299 . . . . . 6 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ((𝑅 / 𝑝) < 𝑅 ↔ ¬ 𝑅 ≤ (𝑅 / 𝑝)))
340335, 339mpbid 232 . . . . 5 (((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ 𝑅 ≤ (𝑅 / 𝑝))
341326, 340pm2.65da 816 . . . 4 ((((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑅 ∧ ¬ 𝑝𝑁)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
3421, 2, 3, 4aks4d1p7 42065 . . . . 5 (𝜑 → ∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
343342adantr 480 . . . 4 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
344341, 343r19.29a 3141 . . 3 ((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
345344adantr 480 . 2 (((𝜑 ∧ 1 < (𝑁 gcd 𝑅)) ∧ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴) → ¬ (𝑅 / (𝑁 gcd 𝑅)) ∥ 𝐴)
3461, 2, 3, 4, 345aks4d1p5 42062 1 (𝜑 → (𝑁 gcd 𝑅) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  wss 3911  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  Fincfn 8895  infcinf 9368  cc 11044  cr 11045  0cc0 11046  1c1 11047   · cmul 11051   < clt 11186  cle 11187  cmin 11383   / cdiv 11813  cn 12164  2c2 12219  3c3 12220  5c5 12222  9c9 12226  0cn0 12420  cz 12507  cuz 12771  +crp 12929  ...cfz 13446  cfl 13730  cceil 13731  cexp 14004  cprod 15846  cdvds 16199   gcd cgcd 16441  cprime 16618   pCnt cpc 16784   logb clogb 26708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cc 10366  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9832  df-card 9870  df-acn 9873  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-ceil 13733  df-mod 13810  df-seq 13945  df-exp 14005  df-fac 14217  df-bc 14246  df-hash 14274  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630  df-prod 15847  df-ef 16010  df-e 16011  df-sin 16012  df-cos 16013  df-pi 16015  df-dvds 16200  df-gcd 16442  df-lcm 16537  df-lcmf 16538  df-prm 16619  df-pc 16785  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19232  df-cmn 19697  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-cmp 23308  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24242  df-ms 24243  df-tms 24244  df-cncf 24805  df-ovol 25399  df-vol 25400  df-mbf 25554  df-itg1 25555  df-itg2 25556  df-ibl 25557  df-itg 25558  df-0p 25605  df-limc 25801  df-dv 25802  df-log 26499  df-cxp 26500  df-logb 26709
This theorem is referenced by:  aks4d1p9  42070  aks4d1  42071
  Copyright terms: Public domain W3C validator