Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnmul Structured version   Visualization version   GIF version

Theorem sgnmul 31885
 Description: Signum of a product. (Contributed by Thierry Arnoux, 2-Oct-2018.)
Assertion
Ref Expression
sgnmul ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))

Proof of Theorem sgnmul
StepHypRef Expression
1 remulcl 10622 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
21rexrd 10691 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ*)
3 eqeq1 2828 . 2 ((sgn‘(𝐴 · 𝐵)) = 0 → ((sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 0 = ((sgn‘𝐴) · (sgn‘𝐵))))
4 eqeq1 2828 . 2 ((sgn‘(𝐴 · 𝐵)) = 1 → ((sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = ((sgn‘𝐴) · (sgn‘𝐵))))
5 eqeq1 2828 . 2 ((sgn‘(𝐴 · 𝐵)) = -1 → ((sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = ((sgn‘𝐴) · (sgn‘𝐵))))
6 fveq2 6663 . . . . . . 7 (𝐴 = 0 → (sgn‘𝐴) = (sgn‘0))
7 sgn0 14450 . . . . . . 7 (sgn‘0) = 0
86, 7syl6eq 2875 . . . . . 6 (𝐴 = 0 → (sgn‘𝐴) = 0)
98oveq1d 7166 . . . . 5 (𝐴 = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵)))
109adantl 485 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵)))
11 sgnclre 31882 . . . . . . 7 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℝ)
1211recnd 10669 . . . . . 6 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℂ)
1312mul02d 10838 . . . . 5 (𝐵 ∈ ℝ → (0 · (sgn‘𝐵)) = 0)
1413ad3antlr 730 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → (0 · (sgn‘𝐵)) = 0)
1510, 14eqtr2d 2860 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵)))
16 fveq2 6663 . . . . . . 7 (𝐵 = 0 → (sgn‘𝐵) = (sgn‘0))
1716, 7syl6eq 2875 . . . . . 6 (𝐵 = 0 → (sgn‘𝐵) = 0)
1817oveq2d 7167 . . . . 5 (𝐵 = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = ((sgn‘𝐴) · 0))
1918adantl 485 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → ((sgn‘𝐴) · (sgn‘𝐵)) = ((sgn‘𝐴) · 0))
20 sgnclre 31882 . . . . . . 7 (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℝ)
2120recnd 10669 . . . . . 6 (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℂ)
2221mul01d 10839 . . . . 5 (𝐴 ∈ ℝ → ((sgn‘𝐴) · 0) = 0)
2322ad3antrrr 729 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → ((sgn‘𝐴) · 0) = 0)
2419, 23eqtr2d 2860 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵)))
25 simpl 486 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2625recnd 10669 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
27 simpr 488 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
2827recnd 10669 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
2926, 28mul0ord 11290 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
3029biimpa 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0))
3115, 24, 30mpjaodan 956 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵)))
32 simpll 766 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ)
3332rexrd 10691 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ*)
34 oveq1 7158 . . . 4 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵)))
3534eqeq2d 2835 . . 3 ((sgn‘𝐴) = 0 → (1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = (0 · (sgn‘𝐵))))
36 oveq1 7158 . . . 4 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) · (sgn‘𝐵)) = (1 · (sgn‘𝐵)))
3736eqeq2d 2835 . . 3 ((sgn‘𝐴) = 1 → (1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = (1 · (sgn‘𝐵))))
38 oveq1 7158 . . . 4 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) · (sgn‘𝐵)) = (-1 · (sgn‘𝐵)))
3938eqeq2d 2835 . . 3 ((sgn‘𝐴) = -1 → (1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = (-1 · (sgn‘𝐵))))
40 simpr 488 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 = 0) → 𝐴 = 0)
4126adantr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℂ)
4228adantr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℂ)
43 simpr 488 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐴 · 𝐵))
4443gt0ne0d 11204 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 𝐵) ≠ 0)
4541, 42, 44mulne0bad 11295 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ≠ 0)
4645neneqd 3019 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → ¬ 𝐴 = 0)
4746adantr 484 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 = 0) → ¬ 𝐴 = 0)
4840, 47pm2.21dd 198 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 = 0) → 1 = (0 · (sgn‘𝐵)))
4927ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ)
5049rexrd 10691 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
51 simpll 766 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
52 0red 10644 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 ∈ ℝ)
53 simplll 774 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
54 simpr 488 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < 𝐴)
5552, 53, 54ltled 10788 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 ≤ 𝐴)
56 simplr 768 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < (𝐴 · 𝐵))
57 prodgt0 11487 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)
5851, 55, 56, 57syl12anc 835 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < 𝐵)
59 sgnp 14451 . . . . . 6 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (sgn‘𝐵) = 1)
6050, 58, 59syl2anc 587 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → (sgn‘𝐵) = 1)
6160oveq2d 7167 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → (1 · (sgn‘𝐵)) = (1 · 1))
62 1t1e1 11798 . . . 4 (1 · 1) = 1
6361, 62syl6req 2876 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 1 = (1 · (sgn‘𝐵)))
6427ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ)
6564rexrd 10691 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
66 simplll 774 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
6766renegcld 11067 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
6864renegcld 11067 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → -𝐵 ∈ ℝ)
69 0red 10644 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 ∈ ℝ)
70 simpr 488 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 < 0)
7125lt0neg1d 11209 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ 0 < -𝐴))
7271ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
7370, 72mpbid 235 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < -𝐴)
7469, 67, 73ltled 10788 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 ≤ -𝐴)
75 simplr 768 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < (𝐴 · 𝐵))
7626ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
7728ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℂ)
7876, 77mul2negd 11095 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
7975, 78breqtrrd 5081 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < (-𝐴 · -𝐵))
80 prodgt0 11487 . . . . . . . 8 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (0 ≤ -𝐴 ∧ 0 < (-𝐴 · -𝐵))) → 0 < -𝐵)
8167, 68, 74, 79, 80syl22anc 837 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < -𝐵)
8227lt0neg1d 11209 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 0 ↔ 0 < -𝐵))
8382ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (𝐵 < 0 ↔ 0 < -𝐵))
8481, 83mpbird 260 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 < 0)
85 sgnn 14455 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 < 0) → (sgn‘𝐵) = -1)
8665, 84, 85syl2anc 587 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (sgn‘𝐵) = -1)
8786oveq2d 7167 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (-1 · (sgn‘𝐵)) = (-1 · -1))
88 neg1mulneg1e1 11849 . . . 4 (-1 · -1) = 1
8987, 88syl6req 2876 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 1 = (-1 · (sgn‘𝐵)))
9033, 35, 37, 39, 48, 63, 89sgn3da 31884 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 1 = ((sgn‘𝐴) · (sgn‘𝐵)))
91 simpll 766 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ)
9291rexrd 10691 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ*)
9334eqeq2d 2835 . . 3 ((sgn‘𝐴) = 0 → (-1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = (0 · (sgn‘𝐵))))
9436eqeq2d 2835 . . 3 ((sgn‘𝐴) = 1 → (-1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = (1 · (sgn‘𝐵))))
9538eqeq2d 2835 . . 3 ((sgn‘𝐴) = -1 → (-1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = (-1 · (sgn‘𝐵))))
96 simpr 488 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 = 0)
9726ad2antrr 725 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 ∈ ℂ)
9828ad2antrr 725 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐵 ∈ ℂ)
99 simplr 768 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) < 0)
10099lt0ne0d 11205 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) ≠ 0)
10197, 98, 100mulne0bad 11295 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 ≠ 0)
102101neneqd 3019 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → ¬ 𝐴 = 0)
10396, 102pm2.21dd 198 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → -1 = (0 · (sgn‘𝐵)))
10427ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ)
105104rexrd 10691 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
106 simplr 768 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ)
10726, 28mulcomd 10662 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
108107breq1d 5063 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ (𝐵 · 𝐴) < 0))
109108biimpa 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) < 0)
110106, 91, 109mul2lt0rgt0 12491 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 < 0)
111105, 110, 85syl2anc 587 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → (sgn‘𝐵) = -1)
112111oveq2d 7167 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → (1 · (sgn‘𝐵)) = (1 · -1))
113 neg1cn 11750 . . . . 5 -1 ∈ ℂ
114113mulid2i 10646 . . . 4 (1 · -1) = -1
115112, 114syl6req 2876 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → -1 = (1 · (sgn‘𝐵)))
116106adantr 484 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ)
117116rexrd 10691 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
118106, 91, 109mul2lt0rlt0 12490 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 0 < 𝐵)
119117, 118, 59syl2anc 587 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (sgn‘𝐵) = 1)
120119oveq2d 7167 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (-1 · (sgn‘𝐵)) = (-1 · 1))
121113mulid1i 10645 . . . 4 (-1 · 1) = -1
122120, 121syl6req 2876 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → -1 = (-1 · (sgn‘𝐵)))
12392, 93, 94, 95, 103, 115, 122sgn3da 31884 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → -1 = ((sgn‘𝐴) · (sgn‘𝐵)))
1242, 3, 4, 5, 31, 90, 123sgn3da 31884 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115   class class class wbr 5053  ‘cfv 6345  (class class class)co 7151  ℂcc 10535  ℝcr 10536  0cc0 10537  1c1 10538   · cmul 10542  ℝ*cxr 10674   < clt 10675   ≤ cle 10676  -cneg 10871  sgncsgn 14447 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-rp 12389  df-sgn 14448 This theorem is referenced by:  sgnmulrp2  31886  sgnmulsgn  31892  sgnmulsgp  31893
 Copyright terms: Public domain W3C validator