Proof of Theorem sgnmul
Step | Hyp | Ref
| Expression |
1 | | remulcl 10940 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
2 | 1 | rexrd 11009 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈
ℝ*) |
3 | | eqeq1 2743 |
. 2
⊢
((sgn‘(𝐴
· 𝐵)) = 0 →
((sgn‘(𝐴 ·
𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 0 = ((sgn‘𝐴) · (sgn‘𝐵)))) |
4 | | eqeq1 2743 |
. 2
⊢
((sgn‘(𝐴
· 𝐵)) = 1 →
((sgn‘(𝐴 ·
𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = ((sgn‘𝐴) · (sgn‘𝐵)))) |
5 | | eqeq1 2743 |
. 2
⊢
((sgn‘(𝐴
· 𝐵)) = -1 →
((sgn‘(𝐴 ·
𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = ((sgn‘𝐴) · (sgn‘𝐵)))) |
6 | | fveq2 6768 |
. . . . . . 7
⊢ (𝐴 = 0 → (sgn‘𝐴) =
(sgn‘0)) |
7 | | sgn0 14781 |
. . . . . . 7
⊢
(sgn‘0) = 0 |
8 | 6, 7 | eqtrdi 2795 |
. . . . . 6
⊢ (𝐴 = 0 → (sgn‘𝐴) = 0) |
9 | 8 | oveq1d 7283 |
. . . . 5
⊢ (𝐴 = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 ·
(sgn‘𝐵))) |
10 | 9 | adantl 481 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵))) |
11 | | sgnclre 32485 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ →
(sgn‘𝐵) ∈
ℝ) |
12 | 11 | recnd 10987 |
. . . . . 6
⊢ (𝐵 ∈ ℝ →
(sgn‘𝐵) ∈
ℂ) |
13 | 12 | mul02d 11156 |
. . . . 5
⊢ (𝐵 ∈ ℝ → (0
· (sgn‘𝐵)) =
0) |
14 | 13 | ad3antlr 727 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → (0 · (sgn‘𝐵)) = 0) |
15 | 10, 14 | eqtr2d 2780 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵))) |
16 | | fveq2 6768 |
. . . . . . 7
⊢ (𝐵 = 0 → (sgn‘𝐵) =
(sgn‘0)) |
17 | 16, 7 | eqtrdi 2795 |
. . . . . 6
⊢ (𝐵 = 0 → (sgn‘𝐵) = 0) |
18 | 17 | oveq2d 7284 |
. . . . 5
⊢ (𝐵 = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = ((sgn‘𝐴) · 0)) |
19 | 18 | adantl 481 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → ((sgn‘𝐴) · (sgn‘𝐵)) = ((sgn‘𝐴) · 0)) |
20 | | sgnclre 32485 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(sgn‘𝐴) ∈
ℝ) |
21 | 20 | recnd 10987 |
. . . . . 6
⊢ (𝐴 ∈ ℝ →
(sgn‘𝐴) ∈
ℂ) |
22 | 21 | mul01d 11157 |
. . . . 5
⊢ (𝐴 ∈ ℝ →
((sgn‘𝐴) · 0)
= 0) |
23 | 22 | ad3antrrr 726 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → ((sgn‘𝐴) · 0) = 0) |
24 | 19, 23 | eqtr2d 2780 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵))) |
25 | | simpl 482 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℝ) |
26 | 25 | recnd 10987 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℂ) |
27 | | simpr 484 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℝ) |
28 | 27 | recnd 10987 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℂ) |
29 | 26, 28 | mul0ord 11608 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) |
30 | 29 | biimpa 476 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0)) |
31 | 15, 24, 30 | mpjaodan 955 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵))) |
32 | | simpll 763 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) → 𝐴 ∈ ℝ) |
33 | 32 | rexrd 11009 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) → 𝐴 ∈
ℝ*) |
34 | | oveq1 7275 |
. . . 4
⊢
((sgn‘𝐴) = 0
→ ((sgn‘𝐴)
· (sgn‘𝐵)) =
(0 · (sgn‘𝐵))) |
35 | 34 | eqeq2d 2750 |
. . 3
⊢
((sgn‘𝐴) = 0
→ (1 = ((sgn‘𝐴)
· (sgn‘𝐵))
↔ 1 = (0 · (sgn‘𝐵)))) |
36 | | oveq1 7275 |
. . . 4
⊢
((sgn‘𝐴) = 1
→ ((sgn‘𝐴)
· (sgn‘𝐵)) =
(1 · (sgn‘𝐵))) |
37 | 36 | eqeq2d 2750 |
. . 3
⊢
((sgn‘𝐴) = 1
→ (1 = ((sgn‘𝐴)
· (sgn‘𝐵))
↔ 1 = (1 · (sgn‘𝐵)))) |
38 | | oveq1 7275 |
. . . 4
⊢
((sgn‘𝐴) = -1
→ ((sgn‘𝐴)
· (sgn‘𝐵)) =
(-1 · (sgn‘𝐵))) |
39 | 38 | eqeq2d 2750 |
. . 3
⊢
((sgn‘𝐴) = -1
→ (1 = ((sgn‘𝐴)
· (sgn‘𝐵))
↔ 1 = (-1 · (sgn‘𝐵)))) |
40 | | simpr 484 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 = 0) → 𝐴 = 0) |
41 | 26 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) → 𝐴 ∈ ℂ) |
42 | 28 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) → 𝐵 ∈ ℂ) |
43 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) → 0 < (𝐴 · 𝐵)) |
44 | 43 | gt0ne0d 11522 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) → (𝐴 · 𝐵) ≠ 0) |
45 | 41, 42, 44 | mulne0bad 11613 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) → 𝐴 ≠ 0) |
46 | 45 | neneqd 2949 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) → ¬ 𝐴 = 0) |
47 | 46 | adantr 480 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 = 0) → ¬ 𝐴 = 0) |
48 | 40, 47 | pm2.21dd 194 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 = 0) → 1 = (0 ·
(sgn‘𝐵))) |
49 | 27 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ) |
50 | 49 | rexrd 11009 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐵 ∈
ℝ*) |
51 | | simpll 763 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
52 | | 0red 10962 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 ∈
ℝ) |
53 | | simplll 771 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) |
54 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < 𝐴) |
55 | 52, 53, 54 | ltled 11106 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
56 | | simplr 765 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < (𝐴 · 𝐵)) |
57 | | prodgt0 11805 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵) |
58 | 51, 55, 56, 57 | syl12anc 833 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < 𝐵) |
59 | | sgnp 14782 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ*
∧ 0 < 𝐵) →
(sgn‘𝐵) =
1) |
60 | 50, 58, 59 | syl2anc 583 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 0 < 𝐴) → (sgn‘𝐵) = 1) |
61 | 60 | oveq2d 7284 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 0 < 𝐴) → (1 ·
(sgn‘𝐵)) = (1
· 1)) |
62 | | 1t1e1 12118 |
. . . 4
⊢ (1
· 1) = 1 |
63 | 61, 62 | eqtr2di 2796 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 0 < 𝐴) → 1 = (1 ·
(sgn‘𝐵))) |
64 | 27 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ) |
65 | 64 | rexrd 11009 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈
ℝ*) |
66 | | simplll 771 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ) |
67 | 66 | renegcld 11385 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ) |
68 | 64 | renegcld 11385 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → -𝐵 ∈ ℝ) |
69 | | 0red 10962 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 ∈
ℝ) |
70 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 < 0) |
71 | 25 | lt0neg1d 11527 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ 0 < -𝐴)) |
72 | 71 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴)) |
73 | 70, 72 | mpbid 231 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < -𝐴) |
74 | 69, 67, 73 | ltled 11106 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 ≤ -𝐴) |
75 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < (𝐴 · 𝐵)) |
76 | 26 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ) |
77 | 28 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℂ) |
78 | 76, 77 | mul2negd 11413 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → (-𝐴 · -𝐵) = (𝐴 · 𝐵)) |
79 | 75, 78 | breqtrrd 5106 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < (-𝐴 · -𝐵)) |
80 | | prodgt0 11805 |
. . . . . . . 8
⊢ (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (0 ≤
-𝐴 ∧ 0 < (-𝐴 · -𝐵))) → 0 < -𝐵) |
81 | 67, 68, 74, 79, 80 | syl22anc 835 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < -𝐵) |
82 | 27 | lt0neg1d 11527 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 0 ↔ 0 < -𝐵)) |
83 | 82 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → (𝐵 < 0 ↔ 0 < -𝐵)) |
84 | 81, 83 | mpbird 256 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 < 0) |
85 | | sgnn 14786 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ*
∧ 𝐵 < 0) →
(sgn‘𝐵) =
-1) |
86 | 65, 84, 85 | syl2anc 583 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → (sgn‘𝐵) = -1) |
87 | 86 | oveq2d 7284 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → (-1 ·
(sgn‘𝐵)) = (-1
· -1)) |
88 | | neg1mulneg1e1 12169 |
. . . 4
⊢ (-1
· -1) = 1 |
89 | 87, 88 | eqtr2di 2796 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) ∧ 𝐴 < 0) → 1 = (-1 ·
(sgn‘𝐵))) |
90 | 33, 35, 37, 39, 48, 63, 89 | sgn3da 32487 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 <
(𝐴 · 𝐵)) → 1 = ((sgn‘𝐴) · (sgn‘𝐵))) |
91 | | simpll 763 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ) |
92 | 91 | rexrd 11009 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈
ℝ*) |
93 | 34 | eqeq2d 2750 |
. . 3
⊢
((sgn‘𝐴) = 0
→ (-1 = ((sgn‘𝐴)
· (sgn‘𝐵))
↔ -1 = (0 · (sgn‘𝐵)))) |
94 | 36 | eqeq2d 2750 |
. . 3
⊢
((sgn‘𝐴) = 1
→ (-1 = ((sgn‘𝐴)
· (sgn‘𝐵))
↔ -1 = (1 · (sgn‘𝐵)))) |
95 | 38 | eqeq2d 2750 |
. . 3
⊢
((sgn‘𝐴) = -1
→ (-1 = ((sgn‘𝐴)
· (sgn‘𝐵))
↔ -1 = (-1 · (sgn‘𝐵)))) |
96 | | simpr 484 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 = 0) |
97 | 26 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 ∈ ℂ) |
98 | 28 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐵 ∈ ℂ) |
99 | | simplr 765 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) < 0) |
100 | 99 | lt0ne0d 11523 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) ≠ 0) |
101 | 97, 98, 100 | mulne0bad 11613 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 ≠ 0) |
102 | 101 | neneqd 2949 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → ¬ 𝐴 = 0) |
103 | 96, 102 | pm2.21dd 194 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → -1 = (0 ·
(sgn‘𝐵))) |
104 | 27 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ) |
105 | 104 | rexrd 11009 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 ∈
ℝ*) |
106 | | simplr 765 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ) |
107 | 26, 28 | mulcomd 10980 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
108 | 107 | breq1d 5088 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ (𝐵 · 𝐴) < 0)) |
109 | 108 | biimpa 476 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) < 0) |
110 | 106, 91, 109 | mul2lt0rgt0 12815 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 < 0) |
111 | 105, 110,
85 | syl2anc 583 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → (sgn‘𝐵) = -1) |
112 | 111 | oveq2d 7284 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → (1 · (sgn‘𝐵)) = (1 ·
-1)) |
113 | | neg1cn 12070 |
. . . . 5
⊢ -1 ∈
ℂ |
114 | 113 | mulid2i 10964 |
. . . 4
⊢ (1
· -1) = -1 |
115 | 112, 114 | eqtr2di 2796 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → -1 = (1 · (sgn‘𝐵))) |
116 | 106 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ) |
117 | 116 | rexrd 11009 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐵 ∈
ℝ*) |
118 | 106, 91, 109 | mul2lt0rlt0 12814 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 0 < 𝐵) |
119 | 117, 118,
59 | syl2anc 583 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (sgn‘𝐵) = 1) |
120 | 119 | oveq2d 7284 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (-1 ·
(sgn‘𝐵)) = (-1
· 1)) |
121 | 113 | mulid1i 10963 |
. . . 4
⊢ (-1
· 1) = -1 |
122 | 120, 121 | eqtr2di 2796 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → -1 = (-1 ·
(sgn‘𝐵))) |
123 | 92, 93, 94, 95, 103, 115, 122 | sgn3da 32487 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → -1 = ((sgn‘𝐴) · (sgn‘𝐵))) |
124 | 2, 3, 4, 5, 31, 90, 123 | sgn3da 32487 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(sgn‘(𝐴 ·
𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵))) |