Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnmul Structured version   Visualization version   GIF version

Theorem sgnmul 31910
Description: Signum of a product. (Contributed by Thierry Arnoux, 2-Oct-2018.)
Assertion
Ref Expression
sgnmul ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))

Proof of Theorem sgnmul
StepHypRef Expression
1 remulcl 10611 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
21rexrd 10680 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ*)
3 eqeq1 2802 . 2 ((sgn‘(𝐴 · 𝐵)) = 0 → ((sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 0 = ((sgn‘𝐴) · (sgn‘𝐵))))
4 eqeq1 2802 . 2 ((sgn‘(𝐴 · 𝐵)) = 1 → ((sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = ((sgn‘𝐴) · (sgn‘𝐵))))
5 eqeq1 2802 . 2 ((sgn‘(𝐴 · 𝐵)) = -1 → ((sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = ((sgn‘𝐴) · (sgn‘𝐵))))
6 fveq2 6645 . . . . . . 7 (𝐴 = 0 → (sgn‘𝐴) = (sgn‘0))
7 sgn0 14440 . . . . . . 7 (sgn‘0) = 0
86, 7eqtrdi 2849 . . . . . 6 (𝐴 = 0 → (sgn‘𝐴) = 0)
98oveq1d 7150 . . . . 5 (𝐴 = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵)))
109adantl 485 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵)))
11 sgnclre 31907 . . . . . . 7 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℝ)
1211recnd 10658 . . . . . 6 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℂ)
1312mul02d 10827 . . . . 5 (𝐵 ∈ ℝ → (0 · (sgn‘𝐵)) = 0)
1413ad3antlr 730 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → (0 · (sgn‘𝐵)) = 0)
1510, 14eqtr2d 2834 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵)))
16 fveq2 6645 . . . . . . 7 (𝐵 = 0 → (sgn‘𝐵) = (sgn‘0))
1716, 7eqtrdi 2849 . . . . . 6 (𝐵 = 0 → (sgn‘𝐵) = 0)
1817oveq2d 7151 . . . . 5 (𝐵 = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = ((sgn‘𝐴) · 0))
1918adantl 485 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → ((sgn‘𝐴) · (sgn‘𝐵)) = ((sgn‘𝐴) · 0))
20 sgnclre 31907 . . . . . . 7 (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℝ)
2120recnd 10658 . . . . . 6 (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℂ)
2221mul01d 10828 . . . . 5 (𝐴 ∈ ℝ → ((sgn‘𝐴) · 0) = 0)
2322ad3antrrr 729 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → ((sgn‘𝐴) · 0) = 0)
2419, 23eqtr2d 2834 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵)))
25 simpl 486 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2625recnd 10658 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
27 simpr 488 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
2827recnd 10658 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
2926, 28mul0ord 11279 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
3029biimpa 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0))
3115, 24, 30mpjaodan 956 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵)))
32 simpll 766 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ)
3332rexrd 10680 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ*)
34 oveq1 7142 . . . 4 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵)))
3534eqeq2d 2809 . . 3 ((sgn‘𝐴) = 0 → (1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = (0 · (sgn‘𝐵))))
36 oveq1 7142 . . . 4 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) · (sgn‘𝐵)) = (1 · (sgn‘𝐵)))
3736eqeq2d 2809 . . 3 ((sgn‘𝐴) = 1 → (1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = (1 · (sgn‘𝐵))))
38 oveq1 7142 . . . 4 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) · (sgn‘𝐵)) = (-1 · (sgn‘𝐵)))
3938eqeq2d 2809 . . 3 ((sgn‘𝐴) = -1 → (1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = (-1 · (sgn‘𝐵))))
40 simpr 488 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 = 0) → 𝐴 = 0)
4126adantr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℂ)
4228adantr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℂ)
43 simpr 488 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐴 · 𝐵))
4443gt0ne0d 11193 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 𝐵) ≠ 0)
4541, 42, 44mulne0bad 11284 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ≠ 0)
4645neneqd 2992 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → ¬ 𝐴 = 0)
4746adantr 484 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 = 0) → ¬ 𝐴 = 0)
4840, 47pm2.21dd 198 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 = 0) → 1 = (0 · (sgn‘𝐵)))
4927ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ)
5049rexrd 10680 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
51 simpll 766 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
52 0red 10633 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 ∈ ℝ)
53 simplll 774 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
54 simpr 488 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < 𝐴)
5552, 53, 54ltled 10777 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 ≤ 𝐴)
56 simplr 768 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < (𝐴 · 𝐵))
57 prodgt0 11476 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)
5851, 55, 56, 57syl12anc 835 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < 𝐵)
59 sgnp 14441 . . . . . 6 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (sgn‘𝐵) = 1)
6050, 58, 59syl2anc 587 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → (sgn‘𝐵) = 1)
6160oveq2d 7151 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → (1 · (sgn‘𝐵)) = (1 · 1))
62 1t1e1 11787 . . . 4 (1 · 1) = 1
6361, 62eqtr2di 2850 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 1 = (1 · (sgn‘𝐵)))
6427ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ)
6564rexrd 10680 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
66 simplll 774 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
6766renegcld 11056 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
6864renegcld 11056 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → -𝐵 ∈ ℝ)
69 0red 10633 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 ∈ ℝ)
70 simpr 488 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 < 0)
7125lt0neg1d 11198 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ 0 < -𝐴))
7271ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
7370, 72mpbid 235 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < -𝐴)
7469, 67, 73ltled 10777 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 ≤ -𝐴)
75 simplr 768 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < (𝐴 · 𝐵))
7626ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
7728ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℂ)
7876, 77mul2negd 11084 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
7975, 78breqtrrd 5058 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < (-𝐴 · -𝐵))
80 prodgt0 11476 . . . . . . . 8 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (0 ≤ -𝐴 ∧ 0 < (-𝐴 · -𝐵))) → 0 < -𝐵)
8167, 68, 74, 79, 80syl22anc 837 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < -𝐵)
8227lt0neg1d 11198 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 0 ↔ 0 < -𝐵))
8382ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (𝐵 < 0 ↔ 0 < -𝐵))
8481, 83mpbird 260 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 < 0)
85 sgnn 14445 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 < 0) → (sgn‘𝐵) = -1)
8665, 84, 85syl2anc 587 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (sgn‘𝐵) = -1)
8786oveq2d 7151 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (-1 · (sgn‘𝐵)) = (-1 · -1))
88 neg1mulneg1e1 11838 . . . 4 (-1 · -1) = 1
8987, 88eqtr2di 2850 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 1 = (-1 · (sgn‘𝐵)))
9033, 35, 37, 39, 48, 63, 89sgn3da 31909 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 1 = ((sgn‘𝐴) · (sgn‘𝐵)))
91 simpll 766 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ)
9291rexrd 10680 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ*)
9334eqeq2d 2809 . . 3 ((sgn‘𝐴) = 0 → (-1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = (0 · (sgn‘𝐵))))
9436eqeq2d 2809 . . 3 ((sgn‘𝐴) = 1 → (-1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = (1 · (sgn‘𝐵))))
9538eqeq2d 2809 . . 3 ((sgn‘𝐴) = -1 → (-1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = (-1 · (sgn‘𝐵))))
96 simpr 488 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 = 0)
9726ad2antrr 725 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 ∈ ℂ)
9828ad2antrr 725 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐵 ∈ ℂ)
99 simplr 768 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) < 0)
10099lt0ne0d 11194 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) ≠ 0)
10197, 98, 100mulne0bad 11284 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 ≠ 0)
102101neneqd 2992 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → ¬ 𝐴 = 0)
10396, 102pm2.21dd 198 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → -1 = (0 · (sgn‘𝐵)))
10427ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ)
105104rexrd 10680 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
106 simplr 768 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ)
10726, 28mulcomd 10651 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
108107breq1d 5040 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ (𝐵 · 𝐴) < 0))
109108biimpa 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) < 0)
110106, 91, 109mul2lt0rgt0 12480 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 < 0)
111105, 110, 85syl2anc 587 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → (sgn‘𝐵) = -1)
112111oveq2d 7151 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → (1 · (sgn‘𝐵)) = (1 · -1))
113 neg1cn 11739 . . . . 5 -1 ∈ ℂ
114113mulid2i 10635 . . . 4 (1 · -1) = -1
115112, 114eqtr2di 2850 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → -1 = (1 · (sgn‘𝐵)))
116106adantr 484 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ)
117116rexrd 10680 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
118106, 91, 109mul2lt0rlt0 12479 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 0 < 𝐵)
119117, 118, 59syl2anc 587 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (sgn‘𝐵) = 1)
120119oveq2d 7151 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (-1 · (sgn‘𝐵)) = (-1 · 1))
121113mulid1i 10634 . . . 4 (-1 · 1) = -1
122120, 121eqtr2di 2850 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → -1 = (-1 · (sgn‘𝐵)))
12392, 93, 94, 95, 103, 115, 122sgn3da 31909 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → -1 = ((sgn‘𝐴) · (sgn‘𝐵)))
1242, 3, 4, 5, 31, 90, 123sgn3da 31909 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531  *cxr 10663   < clt 10664  cle 10665  -cneg 10860  sgncsgn 14437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-rp 12378  df-sgn 14438
This theorem is referenced by:  sgnmulrp2  31911  sgnmulsgn  31917  sgnmulsgp  31918
  Copyright terms: Public domain W3C validator