Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnmul Structured version   Visualization version   GIF version

Theorem sgnmul 32505
Description: Signum of a product. (Contributed by Thierry Arnoux, 2-Oct-2018.)
Assertion
Ref Expression
sgnmul ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))

Proof of Theorem sgnmul
StepHypRef Expression
1 remulcl 10957 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
21rexrd 11026 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ*)
3 eqeq1 2744 . 2 ((sgn‘(𝐴 · 𝐵)) = 0 → ((sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 0 = ((sgn‘𝐴) · (sgn‘𝐵))))
4 eqeq1 2744 . 2 ((sgn‘(𝐴 · 𝐵)) = 1 → ((sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = ((sgn‘𝐴) · (sgn‘𝐵))))
5 eqeq1 2744 . 2 ((sgn‘(𝐴 · 𝐵)) = -1 → ((sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = ((sgn‘𝐴) · (sgn‘𝐵))))
6 fveq2 6771 . . . . . . 7 (𝐴 = 0 → (sgn‘𝐴) = (sgn‘0))
7 sgn0 14798 . . . . . . 7 (sgn‘0) = 0
86, 7eqtrdi 2796 . . . . . 6 (𝐴 = 0 → (sgn‘𝐴) = 0)
98oveq1d 7286 . . . . 5 (𝐴 = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵)))
109adantl 482 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵)))
11 sgnclre 32502 . . . . . . 7 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℝ)
1211recnd 11004 . . . . . 6 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℂ)
1312mul02d 11173 . . . . 5 (𝐵 ∈ ℝ → (0 · (sgn‘𝐵)) = 0)
1413ad3antlr 728 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → (0 · (sgn‘𝐵)) = 0)
1510, 14eqtr2d 2781 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵)))
16 fveq2 6771 . . . . . . 7 (𝐵 = 0 → (sgn‘𝐵) = (sgn‘0))
1716, 7eqtrdi 2796 . . . . . 6 (𝐵 = 0 → (sgn‘𝐵) = 0)
1817oveq2d 7287 . . . . 5 (𝐵 = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = ((sgn‘𝐴) · 0))
1918adantl 482 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → ((sgn‘𝐴) · (sgn‘𝐵)) = ((sgn‘𝐴) · 0))
20 sgnclre 32502 . . . . . . 7 (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℝ)
2120recnd 11004 . . . . . 6 (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℂ)
2221mul01d 11174 . . . . 5 (𝐴 ∈ ℝ → ((sgn‘𝐴) · 0) = 0)
2322ad3antrrr 727 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → ((sgn‘𝐴) · 0) = 0)
2419, 23eqtr2d 2781 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵)))
25 simpl 483 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2625recnd 11004 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
27 simpr 485 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
2827recnd 11004 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
2926, 28mul0ord 11625 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
3029biimpa 477 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0))
3115, 24, 30mpjaodan 956 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵)))
32 simpll 764 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ)
3332rexrd 11026 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ*)
34 oveq1 7278 . . . 4 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵)))
3534eqeq2d 2751 . . 3 ((sgn‘𝐴) = 0 → (1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = (0 · (sgn‘𝐵))))
36 oveq1 7278 . . . 4 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) · (sgn‘𝐵)) = (1 · (sgn‘𝐵)))
3736eqeq2d 2751 . . 3 ((sgn‘𝐴) = 1 → (1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = (1 · (sgn‘𝐵))))
38 oveq1 7278 . . . 4 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) · (sgn‘𝐵)) = (-1 · (sgn‘𝐵)))
3938eqeq2d 2751 . . 3 ((sgn‘𝐴) = -1 → (1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = (-1 · (sgn‘𝐵))))
40 simpr 485 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 = 0) → 𝐴 = 0)
4126adantr 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℂ)
4228adantr 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℂ)
43 simpr 485 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐴 · 𝐵))
4443gt0ne0d 11539 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 𝐵) ≠ 0)
4541, 42, 44mulne0bad 11630 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ≠ 0)
4645neneqd 2950 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → ¬ 𝐴 = 0)
4746adantr 481 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 = 0) → ¬ 𝐴 = 0)
4840, 47pm2.21dd 194 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 = 0) → 1 = (0 · (sgn‘𝐵)))
4927ad2antrr 723 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ)
5049rexrd 11026 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
51 simpll 764 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
52 0red 10979 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 ∈ ℝ)
53 simplll 772 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
54 simpr 485 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < 𝐴)
5552, 53, 54ltled 11123 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 ≤ 𝐴)
56 simplr 766 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < (𝐴 · 𝐵))
57 prodgt0 11822 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)
5851, 55, 56, 57syl12anc 834 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < 𝐵)
59 sgnp 14799 . . . . . 6 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (sgn‘𝐵) = 1)
6050, 58, 59syl2anc 584 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → (sgn‘𝐵) = 1)
6160oveq2d 7287 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → (1 · (sgn‘𝐵)) = (1 · 1))
62 1t1e1 12135 . . . 4 (1 · 1) = 1
6361, 62eqtr2di 2797 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 1 = (1 · (sgn‘𝐵)))
6427ad2antrr 723 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ)
6564rexrd 11026 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
66 simplll 772 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
6766renegcld 11402 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
6864renegcld 11402 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → -𝐵 ∈ ℝ)
69 0red 10979 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 ∈ ℝ)
70 simpr 485 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 < 0)
7125lt0neg1d 11544 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ 0 < -𝐴))
7271ad2antrr 723 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
7370, 72mpbid 231 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < -𝐴)
7469, 67, 73ltled 11123 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 ≤ -𝐴)
75 simplr 766 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < (𝐴 · 𝐵))
7626ad2antrr 723 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
7728ad2antrr 723 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℂ)
7876, 77mul2negd 11430 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
7975, 78breqtrrd 5107 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < (-𝐴 · -𝐵))
80 prodgt0 11822 . . . . . . . 8 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (0 ≤ -𝐴 ∧ 0 < (-𝐴 · -𝐵))) → 0 < -𝐵)
8167, 68, 74, 79, 80syl22anc 836 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < -𝐵)
8227lt0neg1d 11544 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 0 ↔ 0 < -𝐵))
8382ad2antrr 723 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (𝐵 < 0 ↔ 0 < -𝐵))
8481, 83mpbird 256 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 < 0)
85 sgnn 14803 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 < 0) → (sgn‘𝐵) = -1)
8665, 84, 85syl2anc 584 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (sgn‘𝐵) = -1)
8786oveq2d 7287 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (-1 · (sgn‘𝐵)) = (-1 · -1))
88 neg1mulneg1e1 12186 . . . 4 (-1 · -1) = 1
8987, 88eqtr2di 2797 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 1 = (-1 · (sgn‘𝐵)))
9033, 35, 37, 39, 48, 63, 89sgn3da 32504 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 1 = ((sgn‘𝐴) · (sgn‘𝐵)))
91 simpll 764 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ)
9291rexrd 11026 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ*)
9334eqeq2d 2751 . . 3 ((sgn‘𝐴) = 0 → (-1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = (0 · (sgn‘𝐵))))
9436eqeq2d 2751 . . 3 ((sgn‘𝐴) = 1 → (-1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = (1 · (sgn‘𝐵))))
9538eqeq2d 2751 . . 3 ((sgn‘𝐴) = -1 → (-1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = (-1 · (sgn‘𝐵))))
96 simpr 485 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 = 0)
9726ad2antrr 723 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 ∈ ℂ)
9828ad2antrr 723 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐵 ∈ ℂ)
99 simplr 766 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) < 0)
10099lt0ne0d 11540 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) ≠ 0)
10197, 98, 100mulne0bad 11630 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 ≠ 0)
102101neneqd 2950 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → ¬ 𝐴 = 0)
10396, 102pm2.21dd 194 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → -1 = (0 · (sgn‘𝐵)))
10427ad2antrr 723 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ)
105104rexrd 11026 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
106 simplr 766 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ)
10726, 28mulcomd 10997 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
108107breq1d 5089 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ (𝐵 · 𝐴) < 0))
109108biimpa 477 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) < 0)
110106, 91, 109mul2lt0rgt0 12832 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 < 0)
111105, 110, 85syl2anc 584 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → (sgn‘𝐵) = -1)
112111oveq2d 7287 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → (1 · (sgn‘𝐵)) = (1 · -1))
113 neg1cn 12087 . . . . 5 -1 ∈ ℂ
114113mulid2i 10981 . . . 4 (1 · -1) = -1
115112, 114eqtr2di 2797 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → -1 = (1 · (sgn‘𝐵)))
116106adantr 481 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ)
117116rexrd 11026 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
118106, 91, 109mul2lt0rlt0 12831 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 0 < 𝐵)
119117, 118, 59syl2anc 584 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (sgn‘𝐵) = 1)
120119oveq2d 7287 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (-1 · (sgn‘𝐵)) = (-1 · 1))
121113mulid1i 10980 . . . 4 (-1 · 1) = -1
122120, 121eqtr2di 2797 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → -1 = (-1 · (sgn‘𝐵)))
12392, 93, 94, 95, 103, 115, 122sgn3da 32504 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → -1 = ((sgn‘𝐴) · (sgn‘𝐵)))
1242, 3, 4, 5, 31, 90, 123sgn3da 32504 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110   class class class wbr 5079  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873   · cmul 10877  *cxr 11009   < clt 11010  cle 11011  -cneg 11206  sgncsgn 14795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-rp 12730  df-sgn 14796
This theorem is referenced by:  sgnmulrp2  32506  sgnmulsgn  32512  sgnmulsgp  32513
  Copyright terms: Public domain W3C validator