Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangsn Structured version   Visualization version   GIF version

Theorem derangsn 34821
Description: The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
Assertion
Ref Expression
derangsn (𝐴𝑉 → (𝐷‘{𝐴}) = 0)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝑉
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑉(𝑥,𝑦)

Proof of Theorem derangsn
StepHypRef Expression
1 snfi 9077 . . . 4 {𝐴} ∈ Fin
2 derang.d . . . . 5 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
32derangval 34818 . . . 4 ({𝐴} ∈ Fin → (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)}))
41, 3ax-mp 5 . . 3 (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)})
5 f1of 6844 . . . . . . . . . 10 (𝑓:{𝐴}–1-1-onto→{𝐴} → 𝑓:{𝐴}⟶{𝐴})
65adantr 479 . . . . . . . . 9 ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → 𝑓:{𝐴}⟶{𝐴})
7 snidg 4667 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ {𝐴})
8 ffvelcdm 7096 . . . . . . . . 9 ((𝑓:{𝐴}⟶{𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓𝐴) ∈ {𝐴})
96, 7, 8syl2anr 595 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → (𝑓𝐴) ∈ {𝐴})
10 simpr 483 . . . . . . . . . 10 ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)
11 fveq2 6902 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑓𝑦) = (𝑓𝐴))
12 id 22 . . . . . . . . . . . 12 (𝑦 = 𝐴𝑦 = 𝐴)
1311, 12neeq12d 2999 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝑓𝑦) ≠ 𝑦 ↔ (𝑓𝐴) ≠ 𝐴))
1413rspcva 3609 . . . . . . . . . 10 ((𝐴 ∈ {𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → (𝑓𝐴) ≠ 𝐴)
157, 10, 14syl2an 594 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → (𝑓𝐴) ≠ 𝐴)
16 nelsn 4673 . . . . . . . . 9 ((𝑓𝐴) ≠ 𝐴 → ¬ (𝑓𝐴) ∈ {𝐴})
1715, 16syl 17 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → ¬ (𝑓𝐴) ∈ {𝐴})
189, 17pm2.21dd 194 . . . . . . 7 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → 𝑓 ∈ ∅)
1918ex 411 . . . . . 6 (𝐴𝑉 → ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → 𝑓 ∈ ∅))
2019abssdv 4065 . . . . 5 (𝐴𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} ⊆ ∅)
21 ss0 4402 . . . . 5 ({𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} ⊆ ∅ → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} = ∅)
2220, 21syl 17 . . . 4 (𝐴𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} = ∅)
2322fveq2d 6906 . . 3 (𝐴𝑉 → (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)}) = (♯‘∅))
244, 23eqtrid 2780 . 2 (𝐴𝑉 → (𝐷‘{𝐴}) = (♯‘∅))
25 hash0 14368 . 2 (♯‘∅) = 0
2624, 25eqtrdi 2784 1 (𝐴𝑉 → (𝐷‘{𝐴}) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2705  wne 2937  wral 3058  wss 3949  c0 4326  {csn 4632  cmpt 5235  wf 6549  1-1-ontowf1o 6552  cfv 6553  Fincfn 8972  0cc0 11148  chash 14331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-card 9972  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-n0 12513  df-z 12599  df-uz 12863  df-fz 13527  df-hash 14332
This theorem is referenced by:  subfac1  34829
  Copyright terms: Public domain W3C validator