Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangsn Structured version   Visualization version   GIF version

Theorem derangsn 33032
Description: The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
Assertion
Ref Expression
derangsn (𝐴𝑉 → (𝐷‘{𝐴}) = 0)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝑉
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑉(𝑥,𝑦)

Proof of Theorem derangsn
StepHypRef Expression
1 snfi 8788 . . . 4 {𝐴} ∈ Fin
2 derang.d . . . . 5 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
32derangval 33029 . . . 4 ({𝐴} ∈ Fin → (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)}))
41, 3ax-mp 5 . . 3 (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)})
5 f1of 6700 . . . . . . . . . 10 (𝑓:{𝐴}–1-1-onto→{𝐴} → 𝑓:{𝐴}⟶{𝐴})
65adantr 480 . . . . . . . . 9 ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → 𝑓:{𝐴}⟶{𝐴})
7 snidg 4592 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ {𝐴})
8 ffvelrn 6941 . . . . . . . . 9 ((𝑓:{𝐴}⟶{𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓𝐴) ∈ {𝐴})
96, 7, 8syl2anr 596 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → (𝑓𝐴) ∈ {𝐴})
10 simpr 484 . . . . . . . . . 10 ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)
11 fveq2 6756 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑓𝑦) = (𝑓𝐴))
12 id 22 . . . . . . . . . . . 12 (𝑦 = 𝐴𝑦 = 𝐴)
1311, 12neeq12d 3004 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝑓𝑦) ≠ 𝑦 ↔ (𝑓𝐴) ≠ 𝐴))
1413rspcva 3550 . . . . . . . . . 10 ((𝐴 ∈ {𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → (𝑓𝐴) ≠ 𝐴)
157, 10, 14syl2an 595 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → (𝑓𝐴) ≠ 𝐴)
16 nelsn 4598 . . . . . . . . 9 ((𝑓𝐴) ≠ 𝐴 → ¬ (𝑓𝐴) ∈ {𝐴})
1715, 16syl 17 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → ¬ (𝑓𝐴) ∈ {𝐴})
189, 17pm2.21dd 194 . . . . . . 7 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → 𝑓 ∈ ∅)
1918ex 412 . . . . . 6 (𝐴𝑉 → ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → 𝑓 ∈ ∅))
2019abssdv 3998 . . . . 5 (𝐴𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} ⊆ ∅)
21 ss0 4329 . . . . 5 ({𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} ⊆ ∅ → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} = ∅)
2220, 21syl 17 . . . 4 (𝐴𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} = ∅)
2322fveq2d 6760 . . 3 (𝐴𝑉 → (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)}) = (♯‘∅))
244, 23syl5eq 2791 . 2 (𝐴𝑉 → (𝐷‘{𝐴}) = (♯‘∅))
25 hash0 14010 . 2 (♯‘∅) = 0
2624, 25eqtrdi 2795 1 (𝐴𝑉 → (𝐷‘{𝐴}) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wss 3883  c0 4253  {csn 4558  cmpt 5153  wf 6414  1-1-ontowf1o 6417  cfv 6418  Fincfn 8691  0cc0 10802  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973
This theorem is referenced by:  subfac1  33040
  Copyright terms: Public domain W3C validator