| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > derangsn | Structured version Visualization version GIF version | ||
| Description: The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
| Ref | Expression |
|---|---|
| derangsn | ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snfi 9057 | . . . 4 ⊢ {𝐴} ∈ Fin | |
| 2 | derang.d | . . . . 5 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
| 3 | 2 | derangval 35189 | . . . 4 ⊢ ({𝐴} ∈ Fin → (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)})) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)}) |
| 5 | f1of 6818 | . . . . . . . . . 10 ⊢ (𝑓:{𝐴}–1-1-onto→{𝐴} → 𝑓:{𝐴}⟶{𝐴}) | |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → 𝑓:{𝐴}⟶{𝐴}) |
| 7 | snidg 4636 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 8 | ffvelcdm 7071 | . . . . . . . . 9 ⊢ ((𝑓:{𝐴}⟶{𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓‘𝐴) ∈ {𝐴}) | |
| 9 | 6, 7, 8 | syl2anr 597 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → (𝑓‘𝐴) ∈ {𝐴}) |
| 10 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) | |
| 11 | fveq2 6876 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝐴 → (𝑓‘𝑦) = (𝑓‘𝐴)) | |
| 12 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
| 13 | 11, 12 | neeq12d 2993 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑓‘𝐴) ≠ 𝐴)) |
| 14 | 13 | rspcva 3599 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ {𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → (𝑓‘𝐴) ≠ 𝐴) |
| 15 | 7, 10, 14 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → (𝑓‘𝐴) ≠ 𝐴) |
| 16 | nelsn 4642 | . . . . . . . . 9 ⊢ ((𝑓‘𝐴) ≠ 𝐴 → ¬ (𝑓‘𝐴) ∈ {𝐴}) | |
| 17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → ¬ (𝑓‘𝐴) ∈ {𝐴}) |
| 18 | 9, 17 | pm2.21dd 195 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → 𝑓 ∈ ∅) |
| 19 | 18 | ex 412 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → 𝑓 ∈ ∅)) |
| 20 | 19 | abssdv 4043 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} ⊆ ∅) |
| 21 | ss0 4377 | . . . . 5 ⊢ ({𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} ⊆ ∅ → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} = ∅) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} = ∅) |
| 23 | 22 | fveq2d 6880 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)}) = (♯‘∅)) |
| 24 | 4, 23 | eqtrid 2782 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = (♯‘∅)) |
| 25 | hash0 14385 | . 2 ⊢ (♯‘∅) = 0 | |
| 26 | 24, 25 | eqtrdi 2786 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ≠ wne 2932 ∀wral 3051 ⊆ wss 3926 ∅c0 4308 {csn 4601 ↦ cmpt 5201 ⟶wf 6527 –1-1-onto→wf1o 6530 ‘cfv 6531 Fincfn 8959 0cc0 11129 ♯chash 14348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 |
| This theorem is referenced by: subfac1 35200 |
| Copyright terms: Public domain | W3C validator |