![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > derangsn | Structured version Visualization version GIF version |
Description: The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
Ref | Expression |
---|---|
derangsn | ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi 9077 | . . . 4 ⊢ {𝐴} ∈ Fin | |
2 | derang.d | . . . . 5 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
3 | 2 | derangval 34818 | . . . 4 ⊢ ({𝐴} ∈ Fin → (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)})) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)}) |
5 | f1of 6844 | . . . . . . . . . 10 ⊢ (𝑓:{𝐴}–1-1-onto→{𝐴} → 𝑓:{𝐴}⟶{𝐴}) | |
6 | 5 | adantr 479 | . . . . . . . . 9 ⊢ ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → 𝑓:{𝐴}⟶{𝐴}) |
7 | snidg 4667 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
8 | ffvelcdm 7096 | . . . . . . . . 9 ⊢ ((𝑓:{𝐴}⟶{𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓‘𝐴) ∈ {𝐴}) | |
9 | 6, 7, 8 | syl2anr 595 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → (𝑓‘𝐴) ∈ {𝐴}) |
10 | simpr 483 | . . . . . . . . . 10 ⊢ ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) | |
11 | fveq2 6902 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝐴 → (𝑓‘𝑦) = (𝑓‘𝐴)) | |
12 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
13 | 11, 12 | neeq12d 2999 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑓‘𝐴) ≠ 𝐴)) |
14 | 13 | rspcva 3609 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ {𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → (𝑓‘𝐴) ≠ 𝐴) |
15 | 7, 10, 14 | syl2an 594 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → (𝑓‘𝐴) ≠ 𝐴) |
16 | nelsn 4673 | . . . . . . . . 9 ⊢ ((𝑓‘𝐴) ≠ 𝐴 → ¬ (𝑓‘𝐴) ∈ {𝐴}) | |
17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → ¬ (𝑓‘𝐴) ∈ {𝐴}) |
18 | 9, 17 | pm2.21dd 194 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → 𝑓 ∈ ∅) |
19 | 18 | ex 411 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → 𝑓 ∈ ∅)) |
20 | 19 | abssdv 4065 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} ⊆ ∅) |
21 | ss0 4402 | . . . . 5 ⊢ ({𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} ⊆ ∅ → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} = ∅) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} = ∅) |
23 | 22 | fveq2d 6906 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)}) = (♯‘∅)) |
24 | 4, 23 | eqtrid 2780 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = (♯‘∅)) |
25 | hash0 14368 | . 2 ⊢ (♯‘∅) = 0 | |
26 | 24, 25 | eqtrdi 2784 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2705 ≠ wne 2937 ∀wral 3058 ⊆ wss 3949 ∅c0 4326 {csn 4632 ↦ cmpt 5235 ⟶wf 6549 –1-1-onto→wf1o 6552 ‘cfv 6553 Fincfn 8972 0cc0 11148 ♯chash 14331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-card 9972 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-n0 12513 df-z 12599 df-uz 12863 df-fz 13527 df-hash 14332 |
This theorem is referenced by: subfac1 34829 |
Copyright terms: Public domain | W3C validator |