![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > derangsn | Structured version Visualization version GIF version |
Description: The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
Ref | Expression |
---|---|
derangsn | ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi 9046 | . . . 4 ⊢ {𝐴} ∈ Fin | |
2 | derang.d | . . . . 5 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
3 | 2 | derangval 34686 | . . . 4 ⊢ ({𝐴} ∈ Fin → (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)})) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)}) |
5 | f1of 6827 | . . . . . . . . . 10 ⊢ (𝑓:{𝐴}–1-1-onto→{𝐴} → 𝑓:{𝐴}⟶{𝐴}) | |
6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → 𝑓:{𝐴}⟶{𝐴}) |
7 | snidg 4657 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
8 | ffvelcdm 7077 | . . . . . . . . 9 ⊢ ((𝑓:{𝐴}⟶{𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓‘𝐴) ∈ {𝐴}) | |
9 | 6, 7, 8 | syl2anr 596 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → (𝑓‘𝐴) ∈ {𝐴}) |
10 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) | |
11 | fveq2 6885 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝐴 → (𝑓‘𝑦) = (𝑓‘𝐴)) | |
12 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
13 | 11, 12 | neeq12d 2996 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑓‘𝐴) ≠ 𝐴)) |
14 | 13 | rspcva 3604 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ {𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → (𝑓‘𝐴) ≠ 𝐴) |
15 | 7, 10, 14 | syl2an 595 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → (𝑓‘𝐴) ≠ 𝐴) |
16 | nelsn 4663 | . . . . . . . . 9 ⊢ ((𝑓‘𝐴) ≠ 𝐴 → ¬ (𝑓‘𝐴) ∈ {𝐴}) | |
17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → ¬ (𝑓‘𝐴) ∈ {𝐴}) |
18 | 9, 17 | pm2.21dd 194 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → 𝑓 ∈ ∅) |
19 | 18 | ex 412 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → 𝑓 ∈ ∅)) |
20 | 19 | abssdv 4060 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} ⊆ ∅) |
21 | ss0 4393 | . . . . 5 ⊢ ({𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} ⊆ ∅ → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} = ∅) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} = ∅) |
23 | 22 | fveq2d 6889 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)}) = (♯‘∅)) |
24 | 4, 23 | eqtrid 2778 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = (♯‘∅)) |
25 | hash0 14332 | . 2 ⊢ (♯‘∅) = 0 | |
26 | 24, 25 | eqtrdi 2782 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2703 ≠ wne 2934 ∀wral 3055 ⊆ wss 3943 ∅c0 4317 {csn 4623 ↦ cmpt 5224 ⟶wf 6533 –1-1-onto→wf1o 6536 ‘cfv 6537 Fincfn 8941 0cc0 11112 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-hash 14296 |
This theorem is referenced by: subfac1 34697 |
Copyright terms: Public domain | W3C validator |