![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > derangsn | Structured version Visualization version GIF version |
Description: The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
Ref | Expression |
---|---|
derangsn | ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi 9082 | . . . 4 ⊢ {𝐴} ∈ Fin | |
2 | derang.d | . . . . 5 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
3 | 2 | derangval 35152 | . . . 4 ⊢ ({𝐴} ∈ Fin → (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)})) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)}) |
5 | f1of 6849 | . . . . . . . . . 10 ⊢ (𝑓:{𝐴}–1-1-onto→{𝐴} → 𝑓:{𝐴}⟶{𝐴}) | |
6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → 𝑓:{𝐴}⟶{𝐴}) |
7 | snidg 4665 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
8 | ffvelcdm 7101 | . . . . . . . . 9 ⊢ ((𝑓:{𝐴}⟶{𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓‘𝐴) ∈ {𝐴}) | |
9 | 6, 7, 8 | syl2anr 597 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → (𝑓‘𝐴) ∈ {𝐴}) |
10 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) | |
11 | fveq2 6907 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝐴 → (𝑓‘𝑦) = (𝑓‘𝐴)) | |
12 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
13 | 11, 12 | neeq12d 3000 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑓‘𝐴) ≠ 𝐴)) |
14 | 13 | rspcva 3620 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ {𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → (𝑓‘𝐴) ≠ 𝐴) |
15 | 7, 10, 14 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → (𝑓‘𝐴) ≠ 𝐴) |
16 | nelsn 4671 | . . . . . . . . 9 ⊢ ((𝑓‘𝐴) ≠ 𝐴 → ¬ (𝑓‘𝐴) ∈ {𝐴}) | |
17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → ¬ (𝑓‘𝐴) ∈ {𝐴}) |
18 | 9, 17 | pm2.21dd 195 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → 𝑓 ∈ ∅) |
19 | 18 | ex 412 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → 𝑓 ∈ ∅)) |
20 | 19 | abssdv 4078 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} ⊆ ∅) |
21 | ss0 4408 | . . . . 5 ⊢ ({𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} ⊆ ∅ → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} = ∅) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} = ∅) |
23 | 22 | fveq2d 6911 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)}) = (♯‘∅)) |
24 | 4, 23 | eqtrid 2787 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = (♯‘∅)) |
25 | hash0 14403 | . 2 ⊢ (♯‘∅) = 0 | |
26 | 24, 25 | eqtrdi 2791 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ≠ wne 2938 ∀wral 3059 ⊆ wss 3963 ∅c0 4339 {csn 4631 ↦ cmpt 5231 ⟶wf 6559 –1-1-onto→wf1o 6562 ‘cfv 6563 Fincfn 8984 0cc0 11153 ♯chash 14366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 |
This theorem is referenced by: subfac1 35163 |
Copyright terms: Public domain | W3C validator |