Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangsn Structured version   Visualization version   GIF version

Theorem derangsn 32314
Description: The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
Assertion
Ref Expression
derangsn (𝐴𝑉 → (𝐷‘{𝐴}) = 0)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝑉
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑉(𝑥,𝑦)

Proof of Theorem derangsn
StepHypRef Expression
1 snfi 8582 . . . 4 {𝐴} ∈ Fin
2 derang.d . . . . 5 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
32derangval 32311 . . . 4 ({𝐴} ∈ Fin → (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)}))
41, 3ax-mp 5 . . 3 (𝐷‘{𝐴}) = (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)})
5 f1of 6608 . . . . . . . . . 10 (𝑓:{𝐴}–1-1-onto→{𝐴} → 𝑓:{𝐴}⟶{𝐴})
65adantr 481 . . . . . . . . 9 ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → 𝑓:{𝐴}⟶{𝐴})
7 snidg 4589 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ {𝐴})
8 ffvelrn 6841 . . . . . . . . 9 ((𝑓:{𝐴}⟶{𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓𝐴) ∈ {𝐴})
96, 7, 8syl2anr 596 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → (𝑓𝐴) ∈ {𝐴})
10 simpr 485 . . . . . . . . . 10 ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)
11 fveq2 6663 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑓𝑦) = (𝑓𝐴))
12 id 22 . . . . . . . . . . . 12 (𝑦 = 𝐴𝑦 = 𝐴)
1311, 12neeq12d 3074 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝑓𝑦) ≠ 𝑦 ↔ (𝑓𝐴) ≠ 𝐴))
1413rspcva 3618 . . . . . . . . . 10 ((𝐴 ∈ {𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → (𝑓𝐴) ≠ 𝐴)
157, 10, 14syl2an 595 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → (𝑓𝐴) ≠ 𝐴)
16 nelsn 4595 . . . . . . . . 9 ((𝑓𝐴) ≠ 𝐴 → ¬ (𝑓𝐴) ∈ {𝐴})
1715, 16syl 17 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → ¬ (𝑓𝐴) ∈ {𝐴})
189, 17pm2.21dd 196 . . . . . . 7 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → 𝑓 ∈ ∅)
1918ex 413 . . . . . 6 (𝐴𝑉 → ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → 𝑓 ∈ ∅))
2019abssdv 4042 . . . . 5 (𝐴𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} ⊆ ∅)
21 ss0 4349 . . . . 5 ({𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} ⊆ ∅ → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} = ∅)
2220, 21syl 17 . . . 4 (𝐴𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} = ∅)
2322fveq2d 6667 . . 3 (𝐴𝑉 → (♯‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)}) = (♯‘∅))
244, 23syl5eq 2865 . 2 (𝐴𝑉 → (𝐷‘{𝐴}) = (♯‘∅))
25 hash0 13716 . 2 (♯‘∅) = 0
2624, 25syl6eq 2869 1 (𝐴𝑉 → (𝐷‘{𝐴}) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  {cab 2796  wne 3013  wral 3135  wss 3933  c0 4288  {csn 4557  cmpt 5137  wf 6344  1-1-ontowf1o 6347  cfv 6348  Fincfn 8497  0cc0 10525  chash 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-hash 13679
This theorem is referenced by:  subfac1  32322
  Copyright terms: Public domain W3C validator