MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem9 Structured version   Visualization version   GIF version

Theorem bposlem9 25782
Description: Lemma for bpos 25783. Derive a contradiction. (Contributed by Mario Carneiro, 14-Mar-2014.) (Proof shortened by AV, 15-Sep-2021.)
Hypotheses
Ref Expression
bposlem7.1 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
bposlem7.2 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
bposlem9.3 (𝜑𝑁 ∈ ℕ)
bposlem9.4 (𝜑64 < 𝑁)
bposlem9.5 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
Assertion
Ref Expression
bposlem9 (𝜑𝜓)
Distinct variable groups:   𝑛,𝑁   𝑛,𝐺   𝜑,𝑛   𝑁,𝑝   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥,𝑝)   𝜓(𝑥,𝑛,𝑝)   𝐹(𝑥,𝑛,𝑝)   𝐺(𝑥,𝑝)

Proof of Theorem bposlem9
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 bposlem9.4 . . 3 (𝜑64 < 𝑁)
2 bposlem7.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
3 bposlem7.2 . . . 4 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
4 6nn0 11907 . . . . . 6 6 ∈ ℕ0
5 4nn 11709 . . . . . 6 4 ∈ ℕ
64, 5decnncl 12107 . . . . 5 64 ∈ ℕ
76a1i 11 . . . 4 (𝜑64 ∈ ℕ)
8 bposlem9.3 . . . 4 (𝜑𝑁 ∈ ℕ)
9 ere 15432 . . . . . . . 8 e ∈ ℝ
10 8re 11722 . . . . . . . 8 8 ∈ ℝ
11 egt2lt3 15549 . . . . . . . . . 10 (2 < e ∧ e < 3)
1211simpri 486 . . . . . . . . 9 e < 3
13 3lt8 11822 . . . . . . . . 9 3 < 8
14 3re 11706 . . . . . . . . . 10 3 ∈ ℝ
159, 14, 10lttri 10755 . . . . . . . . 9 ((e < 3 ∧ 3 < 8) → e < 8)
1612, 13, 15mp2an 688 . . . . . . . 8 e < 8
179, 10, 16ltleii 10752 . . . . . . 7 e ≤ 8
18 0re 10632 . . . . . . . . 9 0 ∈ ℝ
19 epos 15550 . . . . . . . . 9 0 < e
2018, 9, 19ltleii 10752 . . . . . . . 8 0 ≤ e
21 8pos 11738 . . . . . . . . 9 0 < 8
2218, 10, 21ltleii 10752 . . . . . . . 8 0 ≤ 8
23 le2sq 13489 . . . . . . . 8 (((e ∈ ℝ ∧ 0 ≤ e) ∧ (8 ∈ ℝ ∧ 0 ≤ 8)) → (e ≤ 8 ↔ (e↑2) ≤ (8↑2)))
249, 20, 10, 22, 23mp4an 689 . . . . . . 7 (e ≤ 8 ↔ (e↑2) ≤ (8↑2))
2517, 24mpbi 231 . . . . . 6 (e↑2) ≤ (8↑2)
2610recni 10644 . . . . . . . 8 8 ∈ ℂ
2726sqvali 13533 . . . . . . 7 (8↑2) = (8 · 8)
28 8t8e64 12208 . . . . . . 7 (8 · 8) = 64
2927, 28eqtri 2849 . . . . . 6 (8↑2) = 64
3025, 29breqtri 5088 . . . . 5 (e↑2) ≤ 64
3130a1i 11 . . . 4 (𝜑 → (e↑2) ≤ 64)
329resqcli 13539 . . . . . 6 (e↑2) ∈ ℝ
3332a1i 11 . . . . 5 (𝜑 → (e↑2) ∈ ℝ)
346nnrei 11636 . . . . . 6 64 ∈ ℝ
3534a1i 11 . . . . 5 (𝜑64 ∈ ℝ)
368nnred 11642 . . . . 5 (𝜑𝑁 ∈ ℝ)
37 ltle 10718 . . . . . . 7 ((64 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (64 < 𝑁64 ≤ 𝑁))
3834, 36, 37sylancr 587 . . . . . 6 (𝜑 → (64 < 𝑁64 ≤ 𝑁))
391, 38mpd 15 . . . . 5 (𝜑64 ≤ 𝑁)
4033, 35, 36, 31, 39letrd 10786 . . . 4 (𝜑 → (e↑2) ≤ 𝑁)
412, 3, 7, 8, 31, 40bposlem7 25780 . . 3 (𝜑 → (64 < 𝑁 → (𝐹𝑁) < (𝐹64)))
421, 41mpd 15 . 2 (𝜑 → (𝐹𝑁) < (𝐹64))
432, 3bposlem8 25781 . . . . 5 ((𝐹64) ∈ ℝ ∧ (𝐹64) < (log‘2))
4443a1i 11 . . . 4 (𝜑 → ((𝐹64) ∈ ℝ ∧ (𝐹64) < (log‘2)))
4544simpld 495 . . 3 (𝜑 → (𝐹64) ∈ ℝ)
46 2fveq3 6672 . . . . . . . . 9 (𝑛 = 𝑁 → (𝐺‘(√‘𝑛)) = (𝐺‘(√‘𝑁)))
4746oveq2d 7164 . . . . . . . 8 (𝑛 = 𝑁 → ((√‘2) · (𝐺‘(√‘𝑛))) = ((√‘2) · (𝐺‘(√‘𝑁))))
48 fvoveq1 7171 . . . . . . . . 9 (𝑛 = 𝑁 → (𝐺‘(𝑛 / 2)) = (𝐺‘(𝑁 / 2)))
4948oveq2d 7164 . . . . . . . 8 (𝑛 = 𝑁 → ((9 / 4) · (𝐺‘(𝑛 / 2))) = ((9 / 4) · (𝐺‘(𝑁 / 2))))
5047, 49oveq12d 7166 . . . . . . 7 (𝑛 = 𝑁 → (((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) = (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))))
51 oveq2 7156 . . . . . . . . 9 (𝑛 = 𝑁 → (2 · 𝑛) = (2 · 𝑁))
5251fveq2d 6671 . . . . . . . 8 (𝑛 = 𝑁 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑁)))
5352oveq2d 7164 . . . . . . 7 (𝑛 = 𝑁 → ((log‘2) / (√‘(2 · 𝑛))) = ((log‘2) / (√‘(2 · 𝑁))))
5450, 53oveq12d 7166 . . . . . 6 (𝑛 = 𝑁 → ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
55 ovex 7181 . . . . . 6 ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))) ∈ V
5654, 2, 55fvmpt 6765 . . . . 5 (𝑁 ∈ ℕ → (𝐹𝑁) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
578, 56syl 17 . . . 4 (𝜑 → (𝐹𝑁) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
58 sqrt2re 15593 . . . . . . 7 (√‘2) ∈ ℝ
598nnrpd 12419 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ+)
6059rpsqrtcld 14761 . . . . . . . . 9 (𝜑 → (√‘𝑁) ∈ ℝ+)
61 fveq2 6667 . . . . . . . . . . 11 (𝑥 = (√‘𝑁) → (log‘𝑥) = (log‘(√‘𝑁)))
62 id 22 . . . . . . . . . . 11 (𝑥 = (√‘𝑁) → 𝑥 = (√‘𝑁))
6361, 62oveq12d 7166 . . . . . . . . . 10 (𝑥 = (√‘𝑁) → ((log‘𝑥) / 𝑥) = ((log‘(√‘𝑁)) / (√‘𝑁)))
64 ovex 7181 . . . . . . . . . 10 ((log‘(√‘𝑁)) / (√‘𝑁)) ∈ V
6563, 3, 64fvmpt 6765 . . . . . . . . 9 ((√‘𝑁) ∈ ℝ+ → (𝐺‘(√‘𝑁)) = ((log‘(√‘𝑁)) / (√‘𝑁)))
6660, 65syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(√‘𝑁)) = ((log‘(√‘𝑁)) / (√‘𝑁)))
6760relogcld 25119 . . . . . . . . 9 (𝜑 → (log‘(√‘𝑁)) ∈ ℝ)
6867, 60rerpdivcld 12452 . . . . . . . 8 (𝜑 → ((log‘(√‘𝑁)) / (√‘𝑁)) ∈ ℝ)
6966, 68eqeltrd 2918 . . . . . . 7 (𝜑 → (𝐺‘(√‘𝑁)) ∈ ℝ)
70 remulcl 10611 . . . . . . 7 (((√‘2) ∈ ℝ ∧ (𝐺‘(√‘𝑁)) ∈ ℝ) → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℝ)
7158, 69, 70sylancr 587 . . . . . 6 (𝜑 → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℝ)
72 9re 11725 . . . . . . . 8 9 ∈ ℝ
73 4re 11710 . . . . . . . 8 4 ∈ ℝ
74 4ne0 11734 . . . . . . . 8 4 ≠ 0
7572, 73, 74redivcli 11396 . . . . . . 7 (9 / 4) ∈ ℝ
7659rphalfcld 12433 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ∈ ℝ+)
77 fveq2 6667 . . . . . . . . . . 11 (𝑥 = (𝑁 / 2) → (log‘𝑥) = (log‘(𝑁 / 2)))
78 id 22 . . . . . . . . . . 11 (𝑥 = (𝑁 / 2) → 𝑥 = (𝑁 / 2))
7977, 78oveq12d 7166 . . . . . . . . . 10 (𝑥 = (𝑁 / 2) → ((log‘𝑥) / 𝑥) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
80 ovex 7181 . . . . . . . . . 10 ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ V
8179, 3, 80fvmpt 6765 . . . . . . . . 9 ((𝑁 / 2) ∈ ℝ+ → (𝐺‘(𝑁 / 2)) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
8276, 81syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(𝑁 / 2)) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
8376relogcld 25119 . . . . . . . . 9 (𝜑 → (log‘(𝑁 / 2)) ∈ ℝ)
8483, 76rerpdivcld 12452 . . . . . . . 8 (𝜑 → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℝ)
8582, 84eqeltrd 2918 . . . . . . 7 (𝜑 → (𝐺‘(𝑁 / 2)) ∈ ℝ)
86 remulcl 10611 . . . . . . 7 (((9 / 4) ∈ ℝ ∧ (𝐺‘(𝑁 / 2)) ∈ ℝ) → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℝ)
8775, 85, 86sylancr 587 . . . . . 6 (𝜑 → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℝ)
8871, 87readdcld 10659 . . . . 5 (𝜑 → (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℝ)
89 2rp 12384 . . . . . . 7 2 ∈ ℝ+
90 relogcl 25072 . . . . . . 7 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
9189, 90ax-mp 5 . . . . . 6 (log‘2) ∈ ℝ
92 rpmulcl 12402 . . . . . . . 8 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 · 𝑁) ∈ ℝ+)
9389, 59, 92sylancr 587 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
9493rpsqrtcld 14761 . . . . . 6 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ+)
95 rerpdivcl 12409 . . . . . 6 (((log‘2) ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ+) → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℝ)
9691, 94, 95sylancr 587 . . . . 5 (𝜑 → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℝ)
9788, 96readdcld 10659 . . . 4 (𝜑 → ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))) ∈ ℝ)
9857, 97eqeltrd 2918 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ)
9991a1i 11 . . . 4 (𝜑 → (log‘2) ∈ ℝ)
10044simprd 496 . . . 4 (𝜑 → (𝐹64) < (log‘2))
101 nnrp 12390 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
1025, 101ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
103 relogcl 25072 . . . . . . . . . 10 (4 ∈ ℝ+ → (log‘4) ∈ ℝ)
104102, 103ax-mp 5 . . . . . . . . 9 (log‘4) ∈ ℝ
105 remulcl 10611 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (log‘4) ∈ ℝ) → (𝑁 · (log‘4)) ∈ ℝ)
10636, 104, 105sylancl 586 . . . . . . . 8 (𝜑 → (𝑁 · (log‘4)) ∈ ℝ)
10759relogcld 25119 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
108106, 107resubcld 11057 . . . . . . 7 (𝜑 → ((𝑁 · (log‘4)) − (log‘𝑁)) ∈ ℝ)
109 rpre 12387 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℝ+ → (2 · 𝑁) ∈ ℝ)
110 rpge0 12392 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℝ+ → 0 ≤ (2 · 𝑁))
111109, 110resqrtcld 14767 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℝ+ → (√‘(2 · 𝑁)) ∈ ℝ)
11293, 111syl 17 . . . . . . . . . . 11 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
113 3nn 11705 . . . . . . . . . . 11 3 ∈ ℕ
114 nndivre 11667 . . . . . . . . . . 11 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
115112, 113, 114sylancl 586 . . . . . . . . . 10 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
116 2re 11700 . . . . . . . . . 10 2 ∈ ℝ
117 readdcl 10609 . . . . . . . . . 10 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
118115, 116, 117sylancl 586 . . . . . . . . 9 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
11993relogcld 25119 . . . . . . . . 9 (𝜑 → (log‘(2 · 𝑁)) ∈ ℝ)
120118, 119remulcld 10660 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℝ)
121 remulcl 10611 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (4 · 𝑁) ∈ ℝ)
12273, 36, 121sylancr 587 . . . . . . . . . . 11 (𝜑 → (4 · 𝑁) ∈ ℝ)
123 nndivre 11667 . . . . . . . . . . 11 (((4 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((4 · 𝑁) / 3) ∈ ℝ)
124122, 113, 123sylancl 586 . . . . . . . . . 10 (𝜑 → ((4 · 𝑁) / 3) ∈ ℝ)
125 5re 11713 . . . . . . . . . 10 5 ∈ ℝ
126 resubcl 10939 . . . . . . . . . 10 ((((4 · 𝑁) / 3) ∈ ℝ ∧ 5 ∈ ℝ) → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
127124, 125, 126sylancl 586 . . . . . . . . 9 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
128 remulcl 10611 . . . . . . . . 9 (((((4 · 𝑁) / 3) − 5) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℝ)
129127, 91, 128sylancl 586 . . . . . . . 8 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℝ)
130120, 129readdcld 10659 . . . . . . 7 (𝜑 → (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ∈ ℝ)
131 remulcl 10611 . . . . . . . . 9 ((((4 · 𝑁) / 3) ∈ ℝ ∧ (log‘2) ∈ ℝ) → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℝ)
132124, 91, 131sylancl 586 . . . . . . . 8 (𝜑 → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℝ)
133132, 107resubcld 11057 . . . . . . 7 (𝜑 → ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)) ∈ ℝ)
1348nnzd 12075 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
135 df-5 11692 . . . . . . . . . . . 12 5 = (4 + 1)
13673a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 ∈ ℝ)
137 6nn 11715 . . . . . . . . . . . . . . . 16 6 ∈ ℕ
138 4nn0 11905 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
139 4lt10 12223 . . . . . . . . . . . . . . . 16 4 < 10
140137, 138, 138, 139declti 12125 . . . . . . . . . . . . . . 15 4 < 64
141140a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 < 64)
142136, 35, 36, 141, 1lttrd 10790 . . . . . . . . . . . . 13 (𝜑 → 4 < 𝑁)
143 4z 12005 . . . . . . . . . . . . . 14 4 ∈ ℤ
144 zltp1le 12021 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (4 < 𝑁 ↔ (4 + 1) ≤ 𝑁))
145143, 134, 144sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (4 < 𝑁 ↔ (4 + 1) ≤ 𝑁))
146142, 145mpbid 233 . . . . . . . . . . . 12 (𝜑 → (4 + 1) ≤ 𝑁)
147135, 146eqbrtrid 5098 . . . . . . . . . . 11 (𝜑 → 5 ≤ 𝑁)
148 5nn 11712 . . . . . . . . . . . . 13 5 ∈ ℕ
149148nnzi 11995 . . . . . . . . . . . 12 5 ∈ ℤ
150149eluz1i 12240 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘5) ↔ (𝑁 ∈ ℤ ∧ 5 ≤ 𝑁))
151134, 147, 150sylanbrc 583 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘5))
152 bposlem9.5 . . . . . . . . . . 11 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
153 breq2 5067 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑁 < 𝑝𝑁 < 𝑞))
154 breq1 5066 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑝 ≤ (2 · 𝑁) ↔ 𝑞 ≤ (2 · 𝑁)))
155153, 154anbi12d 630 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ((𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁))))
156155cbvrexv 3459 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ ∃𝑞 ∈ ℙ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁)))
157152, 156sylnib 329 . . . . . . . . . 10 (𝜑 → ¬ ∃𝑞 ∈ ℙ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁)))
158 eqid 2826 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
159 eqid 2826 . . . . . . . . . 10 (⌊‘((2 · 𝑁) / 3)) = (⌊‘((2 · 𝑁) / 3))
160 eqid 2826 . . . . . . . . . 10 (⌊‘(√‘(2 · 𝑁))) = (⌊‘(√‘(2 · 𝑁)))
161151, 157, 158, 159, 160bposlem6 25779 . . . . . . . . 9 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
162 reexplog 25091 . . . . . . . . . . . 12 ((4 ∈ ℝ+𝑁 ∈ ℤ) → (4↑𝑁) = (exp‘(𝑁 · (log‘4))))
163102, 134, 162sylancr 587 . . . . . . . . . . 11 (𝜑 → (4↑𝑁) = (exp‘(𝑁 · (log‘4))))
16459reeflogd 25120 . . . . . . . . . . . 12 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
165164eqcomd 2832 . . . . . . . . . . 11 (𝜑𝑁 = (exp‘(log‘𝑁)))
166163, 165oveq12d 7166 . . . . . . . . . 10 (𝜑 → ((4↑𝑁) / 𝑁) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
167106recnd 10658 . . . . . . . . . . 11 (𝜑 → (𝑁 · (log‘4)) ∈ ℂ)
168107recnd 10658 . . . . . . . . . . 11 (𝜑 → (log‘𝑁) ∈ ℂ)
169 efsub 15443 . . . . . . . . . . 11 (((𝑁 · (log‘4)) ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
170167, 168, 169syl2anc 584 . . . . . . . . . 10 (𝜑 → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
171166, 170eqtr4d 2864 . . . . . . . . 9 (𝜑 → ((4↑𝑁) / 𝑁) = (exp‘((𝑁 · (log‘4)) − (log‘𝑁))))
17293rpcnd 12423 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℂ)
17393rpne0d 12426 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ≠ 0)
174118recnd 10658 . . . . . . . . . . . 12 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℂ)
175172, 173, 174cxpefd 25208 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) = (exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))))
176 2cn 11701 . . . . . . . . . . . 12 2 ∈ ℂ
177 2ne0 11730 . . . . . . . . . . . 12 2 ≠ 0
178127recnd 10658 . . . . . . . . . . . 12 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℂ)
179 cxpef 25161 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ (((4 · 𝑁) / 3) − 5) ∈ ℂ) → (2↑𝑐(((4 · 𝑁) / 3) − 5)) = (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2))))
180176, 177, 178, 179mp3an12i 1458 . . . . . . . . . . 11 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) = (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2))))
181175, 180oveq12d 7166 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
182120recnd 10658 . . . . . . . . . . 11 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℂ)
183129recnd 10658 . . . . . . . . . . 11 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℂ)
184 efadd 15437 . . . . . . . . . . 11 ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℂ ∧ ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℂ) → (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
185182, 183, 184syl2anc 584 . . . . . . . . . 10 (𝜑 → (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
186181, 185eqtr4d 2864 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) = (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))))
187161, 171, 1863brtr3d 5094 . . . . . . . 8 (𝜑 → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))))
188 eflt 15460 . . . . . . . . 9 ((((𝑁 · (log‘4)) − (log‘𝑁)) ∈ ℝ ∧ (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ∈ ℝ) → (((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ↔ (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))))
189108, 130, 188syl2anc 584 . . . . . . . 8 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ↔ (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))))
190187, 189mpbird 258 . . . . . . 7 (𝜑 → ((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))
191108, 130, 133, 190ltsub1dd 11241 . . . . . 6 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) < ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
19236recnd 10658 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
193 mulcom 10612 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) = (𝑁 · 2))
194176, 192, 193sylancr 587 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = (𝑁 · 2))
195194oveq1d 7163 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · (log‘2)) = ((𝑁 · 2) · (log‘2)))
19691recni 10644 . . . . . . . . . . . 12 (log‘2) ∈ ℂ
197 mulass 10614 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ (log‘2) ∈ ℂ) → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
198176, 196, 197mp3an23 1446 . . . . . . . . . . 11 (𝑁 ∈ ℂ → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
199192, 198syl 17 . . . . . . . . . 10 (𝜑 → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
2001962timesi 11764 . . . . . . . . . . . 12 (2 · (log‘2)) = ((log‘2) + (log‘2))
201 relogmul 25088 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (log‘(2 · 2)) = ((log‘2) + (log‘2)))
20289, 89, 201mp2an 688 . . . . . . . . . . . 12 (log‘(2 · 2)) = ((log‘2) + (log‘2))
203 2t2e4 11790 . . . . . . . . . . . . 13 (2 · 2) = 4
204203fveq2i 6670 . . . . . . . . . . . 12 (log‘(2 · 2)) = (log‘4)
205200, 202, 2043eqtr2i 2855 . . . . . . . . . . 11 (2 · (log‘2)) = (log‘4)
206205oveq2i 7159 . . . . . . . . . 10 (𝑁 · (2 · (log‘2))) = (𝑁 · (log‘4))
207199, 206syl6eq 2877 . . . . . . . . 9 (𝜑 → ((𝑁 · 2) · (log‘2)) = (𝑁 · (log‘4)))
208195, 207eqtrd 2861 . . . . . . . 8 (𝜑 → ((2 · 𝑁) · (log‘2)) = (𝑁 · (log‘4)))
209208oveq1d 7163 . . . . . . 7 (𝜑 → (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))) = ((𝑁 · (log‘4)) − (((4 · 𝑁) / 3) · (log‘2))))
210124recnd 10658 . . . . . . . . . 10 (𝜑 → ((4 · 𝑁) / 3) ∈ ℂ)
211 3rp 12385 . . . . . . . . . . . 12 3 ∈ ℝ+
212 rpdivcl 12404 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ+ ∧ 3 ∈ ℝ+) → ((2 · 𝑁) / 3) ∈ ℝ+)
21393, 211, 212sylancl 586 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ+)
214213rpcnd 12423 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) / 3) ∈ ℂ)
215 4p2e6 11779 . . . . . . . . . . . . . 14 (4 + 2) = 6
216215oveq1i 7158 . . . . . . . . . . . . 13 ((4 + 2) · 𝑁) = (6 · 𝑁)
217 4cn 11711 . . . . . . . . . . . . . 14 4 ∈ ℂ
218 adddir 10621 . . . . . . . . . . . . . 14 ((4 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((4 + 2) · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
219217, 176, 192, 218mp3an12i 1458 . . . . . . . . . . . . 13 (𝜑 → ((4 + 2) · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
220216, 219syl5eqr 2875 . . . . . . . . . . . 12 (𝜑 → (6 · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
221220oveq1d 7163 . . . . . . . . . . 11 (𝜑 → ((6 · 𝑁) / 3) = (((4 · 𝑁) + (2 · 𝑁)) / 3))
222 6cn 11717 . . . . . . . . . . . . . 14 6 ∈ ℂ
223 3cn 11707 . . . . . . . . . . . . . . 15 3 ∈ ℂ
224 3ne0 11732 . . . . . . . . . . . . . . 15 3 ≠ 0
225223, 224pm3.2i 471 . . . . . . . . . . . . . 14 (3 ∈ ℂ ∧ 3 ≠ 0)
226 div23 11306 . . . . . . . . . . . . . 14 ((6 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
227222, 225, 226mp3an13 1445 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
228192, 227syl 17 . . . . . . . . . . . 12 (𝜑 → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
229 3t2e6 11792 . . . . . . . . . . . . . . 15 (3 · 2) = 6
230229oveq1i 7158 . . . . . . . . . . . . . 14 ((3 · 2) / 3) = (6 / 3)
231176, 223, 224divcan3i 11375 . . . . . . . . . . . . . 14 ((3 · 2) / 3) = 2
232230, 231eqtr3i 2851 . . . . . . . . . . . . 13 (6 / 3) = 2
233232oveq1i 7158 . . . . . . . . . . . 12 ((6 / 3) · 𝑁) = (2 · 𝑁)
234228, 233syl6eq 2877 . . . . . . . . . . 11 (𝜑 → ((6 · 𝑁) / 3) = (2 · 𝑁))
235122recnd 10658 . . . . . . . . . . . 12 (𝜑 → (4 · 𝑁) ∈ ℂ)
236 remulcl 10611 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
237116, 36, 236sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑁) ∈ ℝ)
238237recnd 10658 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℂ)
239 divdir 11312 . . . . . . . . . . . . 13 (((4 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
240225, 239mp3an3 1443 . . . . . . . . . . . 12 (((4 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ) → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
241235, 238, 240syl2anc 584 . . . . . . . . . . 11 (𝜑 → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
242221, 234, 2413eqtr3d 2869 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
243210, 214, 242mvrladdd 11042 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) − ((4 · 𝑁) / 3)) = ((2 · 𝑁) / 3))
244243oveq1d 7163 . . . . . . . 8 (𝜑 → (((2 · 𝑁) − ((4 · 𝑁) / 3)) · (log‘2)) = (((2 · 𝑁) / 3) · (log‘2)))
24599recnd 10658 . . . . . . . . 9 (𝜑 → (log‘2) ∈ ℂ)
246238, 210, 245subdird 11086 . . . . . . . 8 (𝜑 → (((2 · 𝑁) − ((4 · 𝑁) / 3)) · (log‘2)) = (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))))
247244, 246eqtr3d 2863 . . . . . . 7 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) = (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))))
248132recnd 10658 . . . . . . . 8 (𝜑 → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℂ)
249167, 248, 168nnncan2d 11021 . . . . . . 7 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((𝑁 · (log‘4)) − (((4 · 𝑁) / 3) · (log‘2))))
250209, 247, 2493eqtr4d 2871 . . . . . 6 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) = (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
251115recnd 10658 . . . . . . . . . 10 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℂ)
252176a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
253119recnd 10658 . . . . . . . . . 10 (𝜑 → (log‘(2 · 𝑁)) ∈ ℂ)
254251, 252, 253adddird 10655 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (2 · (log‘(2 · 𝑁)))))
255 relogmul 25088 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (log‘(2 · 𝑁)) = ((log‘2) + (log‘𝑁)))
25689, 59, 255sylancr 587 . . . . . . . . . . . 12 (𝜑 → (log‘(2 · 𝑁)) = ((log‘2) + (log‘𝑁)))
257256oveq2d 7164 . . . . . . . . . . 11 (𝜑 → (2 · (log‘(2 · 𝑁))) = (2 · ((log‘2) + (log‘𝑁))))
258252, 245, 168adddid 10654 . . . . . . . . . . 11 (𝜑 → (2 · ((log‘2) + (log‘𝑁))) = ((2 · (log‘2)) + (2 · (log‘𝑁))))
259257, 258eqtrd 2861 . . . . . . . . . 10 (𝜑 → (2 · (log‘(2 · 𝑁))) = ((2 · (log‘2)) + (2 · (log‘𝑁))))
260259oveq2d 7164 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (2 · (log‘(2 · 𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))))
261254, 260eqtrd 2861 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))))
262 5cn 11714 . . . . . . . . . . . 12 5 ∈ ℂ
263262a1i 11 . . . . . . . . . . 11 (𝜑 → 5 ∈ ℂ)
264210, 263, 245subdird 11086 . . . . . . . . . 10 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) = ((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))))
265264oveq1d 7163 . . . . . . . . 9 (𝜑 → (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = (((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
266262, 196mulcli 10637 . . . . . . . . . . 11 (5 · (log‘2)) ∈ ℂ
267266a1i 11 . . . . . . . . . 10 (𝜑 → (5 · (log‘2)) ∈ ℂ)
268248, 267, 168nnncan1d 11020 . . . . . . . . 9 (𝜑 → (((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((log‘𝑁) − (5 · (log‘2))))
269265, 268eqtrd 2861 . . . . . . . 8 (𝜑 → (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((log‘𝑁) − (5 · (log‘2))))
270261, 269oveq12d 7166 . . . . . . 7 (𝜑 → (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)))) = (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))))
271133recnd 10658 . . . . . . . 8 (𝜑 → ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)) ∈ ℂ)
272182, 183, 271addsubassd 11006 . . . . . . 7 (𝜑 → ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)))))
273262, 223, 196subdiri 11079 . . . . . . . . . . . . 13 ((5 − 3) · (log‘2)) = ((5 · (log‘2)) − (3 · (log‘2)))
274 3p2e5 11777 . . . . . . . . . . . . . . . 16 (3 + 2) = 5
275274oveq1i 7158 . . . . . . . . . . . . . . 15 ((3 + 2) − 3) = (5 − 3)
276 pncan2 10882 . . . . . . . . . . . . . . . 16 ((3 ∈ ℂ ∧ 2 ∈ ℂ) → ((3 + 2) − 3) = 2)
277223, 176, 276mp2an 688 . . . . . . . . . . . . . . 15 ((3 + 2) − 3) = 2
278275, 277eqtr3i 2851 . . . . . . . . . . . . . 14 (5 − 3) = 2
279278oveq1i 7158 . . . . . . . . . . . . 13 ((5 − 3) · (log‘2)) = (2 · (log‘2))
280273, 279eqtr3i 2851 . . . . . . . . . . . 12 ((5 · (log‘2)) − (3 · (log‘2))) = (2 · (log‘2))
281280a1i 11 . . . . . . . . . . 11 (𝜑 → ((5 · (log‘2)) − (3 · (log‘2))) = (2 · (log‘2)))
282 mulcl 10610 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (2 · (log‘𝑁)) ∈ ℂ)
283176, 168, 282sylancr 587 . . . . . . . . . . . 12 (𝜑 → (2 · (log‘𝑁)) ∈ ℂ)
284 df-3 11690 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
285284oveq1i 7158 . . . . . . . . . . . . . . 15 (3 · (log‘𝑁)) = ((2 + 1) · (log‘𝑁))
286 1cnd 10625 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
287252, 286, 168adddird 10655 . . . . . . . . . . . . . . 15 (𝜑 → ((2 + 1) · (log‘𝑁)) = ((2 · (log‘𝑁)) + (1 · (log‘𝑁))))
288285, 287syl5eq 2873 . . . . . . . . . . . . . 14 (𝜑 → (3 · (log‘𝑁)) = ((2 · (log‘𝑁)) + (1 · (log‘𝑁))))
289168mulid2d 10648 . . . . . . . . . . . . . . 15 (𝜑 → (1 · (log‘𝑁)) = (log‘𝑁))
290289oveq2d 7164 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (log‘𝑁)) + (1 · (log‘𝑁))) = ((2 · (log‘𝑁)) + (log‘𝑁)))
291288, 290eqtrd 2861 . . . . . . . . . . . . 13 (𝜑 → (3 · (log‘𝑁)) = ((2 · (log‘𝑁)) + (log‘𝑁)))
292291oveq1d 7163 . . . . . . . . . . . 12 (𝜑 → ((3 · (log‘𝑁)) − (5 · (log‘2))) = (((2 · (log‘𝑁)) + (log‘𝑁)) − (5 · (log‘2))))
293283, 168, 267, 292assraddsubd 11043 . . . . . . . . . . 11 (𝜑 → ((3 · (log‘𝑁)) − (5 · (log‘2))) = ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2)))))
294281, 293oveq12d 7166 . . . . . . . . . 10 (𝜑 → (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))) = ((2 · (log‘2)) + ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2))))))
295 relogdiv 25089 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (log‘(𝑁 / 2)) = ((log‘𝑁) − (log‘2)))
29659, 89, 295sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (log‘(𝑁 / 2)) = ((log‘𝑁) − (log‘2)))
297296oveq2d 7164 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘(𝑁 / 2))) = (3 · ((log‘𝑁) − (log‘2))))
298 subdi 11062 . . . . . . . . . . . . . 14 ((3 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
299223, 196, 298mp3an13 1445 . . . . . . . . . . . . 13 ((log‘𝑁) ∈ ℂ → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
300168, 299syl 17 . . . . . . . . . . . 12 (𝜑 → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
301297, 300eqtrd 2861 . . . . . . . . . . 11 (𝜑 → (3 · (log‘(𝑁 / 2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
302 div23 11306 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
303176, 225, 302mp3an13 1445 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
304192, 303syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
305223, 176, 223, 176, 177, 177divmuldivi 11389 . . . . . . . . . . . . . . . . 17 ((3 / 2) · (3 / 2)) = ((3 · 3) / (2 · 2))
306 3t3e9 11793 . . . . . . . . . . . . . . . . . 18 (3 · 3) = 9
307306, 203oveq12i 7160 . . . . . . . . . . . . . . . . 17 ((3 · 3) / (2 · 2)) = (9 / 4)
308305, 307eqtr2i 2850 . . . . . . . . . . . . . . . 16 (9 / 4) = ((3 / 2) · (3 / 2))
309308a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (9 / 4) = ((3 / 2) · (3 / 2)))
310304, 309oveq12d 7166 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) / 3) · (9 / 4)) = (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))))
311176, 223, 224divcli 11371 . . . . . . . . . . . . . . 15 (2 / 3) ∈ ℂ
312223, 176, 177divcli 11371 . . . . . . . . . . . . . . . 16 (3 / 2) ∈ ℂ
313 mul4 10797 . . . . . . . . . . . . . . . 16 ((((2 / 3) ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ ((3 / 2) ∈ ℂ ∧ (3 / 2) ∈ ℂ)) → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
314312, 312, 313mpanr12 701 . . . . . . . . . . . . . . 15 (((2 / 3) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
315311, 192, 314sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
316 divcan6 11336 . . . . . . . . . . . . . . . . . 18 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 / 3) · (3 / 2)) = 1)
317176, 177, 223, 224, 316mp4an 689 . . . . . . . . . . . . . . . . 17 ((2 / 3) · (3 / 2)) = 1
318317oveq1i 7158 . . . . . . . . . . . . . . . 16 (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (1 · (𝑁 · (3 / 2)))
319 mulcl 10610 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ (3 / 2) ∈ ℂ) → (𝑁 · (3 / 2)) ∈ ℂ)
320192, 312, 319sylancl 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 · (3 / 2)) ∈ ℂ)
321320mulid2d 10648 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · (𝑁 · (3 / 2))) = (𝑁 · (3 / 2)))
322318, 321syl5eq 2873 . . . . . . . . . . . . . . 15 (𝜑 → (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (𝑁 · (3 / 2)))
323 2cnne0 11836 . . . . . . . . . . . . . . . . 17 (2 ∈ ℂ ∧ 2 ≠ 0)
324 div12 11309 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
325223, 323, 324mp3an23 1446 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
326192, 325syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
327322, 326eqtrd 2861 . . . . . . . . . . . . . 14 (𝜑 → (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (3 · (𝑁 / 2)))
328310, 315, 3273eqtrd 2865 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) · (9 / 4)) = (3 · (𝑁 / 2)))
329328, 82oveq12d 7166 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · (9 / 4)) · (𝐺‘(𝑁 / 2))) = ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))))
33075recni 10644 . . . . . . . . . . . . . 14 (9 / 4) ∈ ℂ
331330a1i 11 . . . . . . . . . . . . 13 (𝜑 → (9 / 4) ∈ ℂ)
33285recnd 10658 . . . . . . . . . . . . 13 (𝜑 → (𝐺‘(𝑁 / 2)) ∈ ℂ)
333214, 331, 332mulassd 10653 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · (9 / 4)) · (𝐺‘(𝑁 / 2))) = (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))
334223a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 3 ∈ ℂ)
33576rpcnd 12423 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 2) ∈ ℂ)
33683recnd 10658 . . . . . . . . . . . . . . 15 (𝜑 → (log‘(𝑁 / 2)) ∈ ℂ)
33776rpne0d 12426 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 / 2) ≠ 0)
338336, 335, 337divcld 11405 . . . . . . . . . . . . . 14 (𝜑 → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℂ)
339334, 335, 338mulassd 10653 . . . . . . . . . . . . 13 (𝜑 → ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (3 · ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2)))))
340336, 335, 337divcan2d 11407 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (log‘(𝑁 / 2)))
341340oveq2d 7164 . . . . . . . . . . . . 13 (𝜑 → (3 · ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2)))) = (3 · (log‘(𝑁 / 2))))
342339, 341eqtrd 2861 . . . . . . . . . . . 12 (𝜑 → ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (3 · (log‘(𝑁 / 2))))
343329, 333, 3423eqtr3d 2869 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (3 · (log‘(𝑁 / 2))))
344223, 196mulcli 10637 . . . . . . . . . . . . 13 (3 · (log‘2)) ∈ ℂ
345344a1i 11 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘2)) ∈ ℂ)
346 mulcl 10610 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (3 · (log‘𝑁)) ∈ ℂ)
347223, 168, 346sylancr 587 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘𝑁)) ∈ ℂ)
348267, 345, 347npncan3d 11022 . . . . . . . . . . 11 (𝜑 → (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
349301, 343, 3483eqtr4d 2871 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))))
350116, 91remulcli 10646 . . . . . . . . . . . . 13 (2 · (log‘2)) ∈ ℝ
351350recni 10644 . . . . . . . . . . . 12 (2 · (log‘2)) ∈ ℂ
352351a1i 11 . . . . . . . . . . 11 (𝜑 → (2 · (log‘2)) ∈ ℂ)
353 subcl 10874 . . . . . . . . . . . 12 (((log‘𝑁) ∈ ℂ ∧ (5 · (log‘2)) ∈ ℂ) → ((log‘𝑁) − (5 · (log‘2))) ∈ ℂ)
354168, 266, 353sylancl 586 . . . . . . . . . . 11 (𝜑 → ((log‘𝑁) − (5 · (log‘2))) ∈ ℂ)
355352, 283, 354addassd 10652 . . . . . . . . . 10 (𝜑 → (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2)))) = ((2 · (log‘2)) + ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2))))))
356294, 349, 3553eqtr4d 2871 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2)))))
357356oveq2d 7164 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2))))))
358 mulcl 10610 . . . . . . . . . . 11 ((((√‘(2 · 𝑁)) / 3) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (((√‘(2 · 𝑁)) / 3) · (log‘2)) ∈ ℂ)
359251, 196, 358sylancl 586 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘2)) ∈ ℂ)
360251, 168mulcld 10650 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) ∈ ℂ)
36187recnd 10658 . . . . . . . . . . 11 (𝜑 → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℂ)
362214, 361mulcld 10650 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℂ)
363359, 360, 362addassd 10652 . . . . . . . . 9 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
364256oveq2d 7164 . . . . . . . . . . 11 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) = (((√‘(2 · 𝑁)) / 3) · ((log‘2) + (log‘𝑁))))
365251, 245, 168adddid 10654 . . . . . . . . . . 11 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((log‘2) + (log‘𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))))
366364, 365eqtrd 2861 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))))
367366oveq1d 7163 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = (((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
36857oveq2d 7164 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = (((2 · 𝑁) / 3) · ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁))))))
36988recnd 10658 . . . . . . . . . . . 12 (𝜑 → (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℂ)
37096recnd 10658 . . . . . . . . . . . 12 (𝜑 → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℂ)
371214, 369, 370adddid 10654 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁))))) = ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))))
372368, 371eqtrd 2861 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))))
37371recnd 10658 . . . . . . . . . . . . 13 (𝜑 → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℂ)
374214, 373, 361adddid 10654 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
37593rpge0d 12425 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (2 · 𝑁))
376 remsqsqrt 14606 . . . . . . . . . . . . . . . . . 18 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
377237, 375, 376syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
378377oveq1d 7163 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) / 3) = ((2 · 𝑁) / 3))
379112recnd 10658 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(2 · 𝑁)) ∈ ℂ)
380224a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ≠ 0)
381379, 379, 334, 380div23d 11442 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) / 3) = (((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))))
382378, 381eqtr3d 2863 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) / 3) = (((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))))
383382oveq1d 7163 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((√‘2) · (𝐺‘(√‘𝑁)))))
384251, 379, 373mulassd 10653 . . . . . . . . . . . . . 14 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁))))))
385 0le2 11728 . . . . . . . . . . . . . . . . . . 19 0 ≤ 2
386116, 385pm3.2i 471 . . . . . . . . . . . . . . . . . 18 (2 ∈ ℝ ∧ 0 ≤ 2)
38759rprege0d 12428 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
388 sqrtmul 14609 . . . . . . . . . . . . . . . . . 18 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) → (√‘(2 · 𝑁)) = ((√‘2) · (√‘𝑁)))
389386, 387, 388sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(2 · 𝑁)) = ((√‘2) · (√‘𝑁)))
390389oveq1d 7163 . . . . . . . . . . . . . . . 16 (𝜑 → ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘2) · (√‘𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))))
39158recni 10644 . . . . . . . . . . . . . . . . . 18 (√‘2) ∈ ℂ
392391a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘2) ∈ ℂ)
39360rpcnd 12423 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘𝑁) ∈ ℂ)
39469recnd 10658 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺‘(√‘𝑁)) ∈ ℂ)
395392, 393, 392, 394mul4d 10841 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘2) · (√‘𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))))
396 remsqsqrt 14606 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2)
397116, 385, 396mp2an 688 . . . . . . . . . . . . . . . . . . 19 ((√‘2) · (√‘2)) = 2
398397a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((√‘2) · (√‘2)) = 2)
39966oveq2d 7164 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · (𝐺‘(√‘𝑁))) = ((√‘𝑁) · ((log‘(√‘𝑁)) / (√‘𝑁))))
40067recnd 10658 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (log‘(√‘𝑁)) ∈ ℂ)
40160rpne0d 12426 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑁) ≠ 0)
402400, 393, 401divcan2d 11407 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · ((log‘(√‘𝑁)) / (√‘𝑁))) = (log‘(√‘𝑁)))
403399, 402eqtrd 2861 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((√‘𝑁) · (𝐺‘(√‘𝑁))) = (log‘(√‘𝑁)))
404398, 403oveq12d 7166 . . . . . . . . . . . . . . . . 17 (𝜑 → (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))) = (2 · (log‘(√‘𝑁))))
4054002timesd 11869 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (log‘(√‘𝑁))) = ((log‘(√‘𝑁)) + (log‘(√‘𝑁))))
40660, 60relogmuld 25121 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((√‘𝑁) · (√‘𝑁))) = ((log‘(√‘𝑁)) + (log‘(√‘𝑁))))
407 remsqsqrt 14606 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → ((√‘𝑁) · (√‘𝑁)) = 𝑁)
408387, 407syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · (√‘𝑁)) = 𝑁)
409408fveq2d 6671 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((√‘𝑁) · (√‘𝑁))) = (log‘𝑁))
410406, 409eqtr3d 2863 . . . . . . . . . . . . . . . . 17 (𝜑 → ((log‘(√‘𝑁)) + (log‘(√‘𝑁))) = (log‘𝑁))
411404, 405, 4103eqtrd 2865 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))) = (log‘𝑁))
412390, 395, 4113eqtrd 2865 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (log‘𝑁))
413412oveq2d 7164 . . . . . . . . . . . . . 14 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁))))) = (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)))
414383, 384, 4133eqtrd 2865 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)))
415414oveq1d 7163 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
416374, 415eqtrd 2861 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
417382oveq1d 7163 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((log‘2) / (√‘(2 · 𝑁)))))
418251, 379, 370mulassd 10653 . . . . . . . . . . . 12 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((log‘2) / (√‘(2 · 𝑁)))) = (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁))))))
41994rpne0d 12426 . . . . . . . . . . . . . 14 (𝜑 → (√‘(2 · 𝑁)) ≠ 0)
420245, 379, 419divcan2d 11407 . . . . . . . . . . . . 13 (𝜑 → ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁)))) = (log‘2))
421420oveq2d 7164 . . . . . . . . . . . 12 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁))))) = (((√‘(2 · 𝑁)) / 3) · (log‘2)))
422417, 418, 4213eqtrd 2865 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁)))) = (((√‘(2 · 𝑁)) / 3) · (log‘2)))
423416, 422oveq12d 7166 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))) = (((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((√‘(2 · 𝑁)) / 3) · (log‘2))))
424360, 362addcld 10649 . . . . . . . . . . 11 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) ∈ ℂ)
425424, 359addcomd 10831 . . . . . . . . . 10 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((√‘(2 · 𝑁)) / 3) · (log‘2))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
426372, 423, 4253eqtrd 2865 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
427363, 367, 4263eqtr4rd 2872 . . . . . . . 8 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
428251, 253mulcld 10650 . . . . . . . . 9 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) ∈ ℂ)
429 addcl 10608 . . . . . . . . . 10 (((2 · (log‘2)) ∈ ℂ ∧ (2 · (log‘𝑁)) ∈ ℂ) → ((2 · (log‘2)) + (2 · (log‘𝑁))) ∈ ℂ)
430351, 283, 429sylancr 587 . . . . . . . . 9 (𝜑 → ((2 · (log‘2)) + (2 · (log‘𝑁))) ∈ ℂ)
431428, 430, 354addassd 10652 . . . . . . . 8 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2))))))
432357, 427, 4313eqtr4d 2871 . . . . . . 7 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))))
433270, 272, 4323eqtr4rd 2872 . . . . . 6 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
434191, 250, 4333brtr4d 5095 . . . . 5 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) < (((2 · 𝑁) / 3) · (𝐹𝑁)))
43599, 98, 213ltmul2d 12463 . . . . 5 (𝜑 → ((log‘2) < (𝐹𝑁) ↔ (((2 · 𝑁) / 3) · (log‘2)) < (((2 · 𝑁) / 3) · (𝐹𝑁))))
436434, 435mpbird 258 . . . 4 (𝜑 → (log‘2) < (𝐹𝑁))
43745, 99, 98, 100, 436lttrd 10790 . . 3 (𝜑 → (𝐹64) < (𝐹𝑁))
43845, 98, 437ltnsymd 10778 . 2 (𝜑 → ¬ (𝐹𝑁) < (𝐹64))
43942, 438pm2.21dd 196 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3021  wrex 3144  ifcif 4470   class class class wbr 5063  cmpt 5143  cfv 6352  (class class class)co 7148  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11627  2c2 11681  3c3 11682  4c4 11683  5c5 11684  6c6 11685  8c8 11687  9c9 11688  cz 11970  cdc 12087  cuz 12232  +crp 12379  cfl 13150  cexp 13419  Ccbc 13652  csqrt 14582  expce 15405  eceu 15406  cprime 16005   pCnt cpc 16163  logclog 25051  𝑐ccxp 25052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-xnn0 11957  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-e 15412  df-sin 15413  df-cos 15414  df-pi 15416  df-dvds 15598  df-gcd 15834  df-prm 16006  df-pc 16164  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-mulg 18155  df-cntz 18377  df-cmn 18828  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-fbas 20458  df-fg 20459  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-ntr 21544  df-cls 21545  df-nei 21622  df-lp 21660  df-perf 21661  df-cn 21751  df-cnp 21752  df-haus 21839  df-tx 22086  df-hmeo 22279  df-fil 22370  df-fm 22462  df-flim 22463  df-flf 22464  df-xms 22845  df-ms 22846  df-tms 22847  df-cncf 23401  df-limc 24379  df-dv 24380  df-log 25053  df-cxp 25054  df-cht 25588  df-ppi 25591
This theorem is referenced by:  bpos  25783
  Copyright terms: Public domain W3C validator