MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem9 Structured version   Visualization version   GIF version

Theorem bposlem9 27139
Description: Lemma for bpos 27140. Derive a contradiction. (Contributed by Mario Carneiro, 14-Mar-2014.) (Proof shortened by AV, 15-Sep-2021.)
Hypotheses
Ref Expression
bposlem7.1 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
bposlem7.2 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
bposlem9.3 (𝜑𝑁 ∈ ℕ)
bposlem9.4 (𝜑64 < 𝑁)
bposlem9.5 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
Assertion
Ref Expression
bposlem9 (𝜑𝜓)
Distinct variable groups:   𝑛,𝑁   𝑛,𝐺   𝜑,𝑛   𝑁,𝑝   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥,𝑝)   𝜓(𝑥,𝑛,𝑝)   𝐹(𝑥,𝑛,𝑝)   𝐺(𝑥,𝑝)

Proof of Theorem bposlem9
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 bposlem9.4 . . 3 (𝜑64 < 𝑁)
2 bposlem7.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
3 bposlem7.2 . . . 4 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
4 6nn0 12500 . . . . . 6 6 ∈ ℕ0
5 4nn 12302 . . . . . 6 4 ∈ ℕ
64, 5decnncl 12704 . . . . 5 64 ∈ ℕ
76a1i 11 . . . 4 (𝜑64 ∈ ℕ)
8 bposlem9.3 . . . 4 (𝜑𝑁 ∈ ℕ)
9 ere 16039 . . . . . . . 8 e ∈ ℝ
10 8re 12315 . . . . . . . 8 8 ∈ ℝ
11 egt2lt3 16156 . . . . . . . . . 10 (2 < e ∧ e < 3)
1211simpri 485 . . . . . . . . 9 e < 3
13 3lt8 12415 . . . . . . . . 9 3 < 8
14 3re 12299 . . . . . . . . . 10 3 ∈ ℝ
159, 14, 10lttri 11347 . . . . . . . . 9 ((e < 3 ∧ 3 < 8) → e < 8)
1612, 13, 15mp2an 689 . . . . . . . 8 e < 8
179, 10, 16ltleii 11344 . . . . . . 7 e ≤ 8
18 0re 11223 . . . . . . . . 9 0 ∈ ℝ
19 epos 16157 . . . . . . . . 9 0 < e
2018, 9, 19ltleii 11344 . . . . . . . 8 0 ≤ e
21 8pos 12331 . . . . . . . . 9 0 < 8
2218, 10, 21ltleii 11344 . . . . . . . 8 0 ≤ 8
23 le2sq 14106 . . . . . . . 8 (((e ∈ ℝ ∧ 0 ≤ e) ∧ (8 ∈ ℝ ∧ 0 ≤ 8)) → (e ≤ 8 ↔ (e↑2) ≤ (8↑2)))
249, 20, 10, 22, 23mp4an 690 . . . . . . 7 (e ≤ 8 ↔ (e↑2) ≤ (8↑2))
2517, 24mpbi 229 . . . . . 6 (e↑2) ≤ (8↑2)
2610recni 11235 . . . . . . . 8 8 ∈ ℂ
2726sqvali 14151 . . . . . . 7 (8↑2) = (8 · 8)
28 8t8e64 12805 . . . . . . 7 (8 · 8) = 64
2927, 28eqtri 2759 . . . . . 6 (8↑2) = 64
3025, 29breqtri 5173 . . . . 5 (e↑2) ≤ 64
3130a1i 11 . . . 4 (𝜑 → (e↑2) ≤ 64)
329resqcli 14157 . . . . . 6 (e↑2) ∈ ℝ
3332a1i 11 . . . . 5 (𝜑 → (e↑2) ∈ ℝ)
346nnrei 12228 . . . . . 6 64 ∈ ℝ
3534a1i 11 . . . . 5 (𝜑64 ∈ ℝ)
368nnred 12234 . . . . 5 (𝜑𝑁 ∈ ℝ)
37 ltle 11309 . . . . . . 7 ((64 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (64 < 𝑁64 ≤ 𝑁))
3834, 36, 37sylancr 586 . . . . . 6 (𝜑 → (64 < 𝑁64 ≤ 𝑁))
391, 38mpd 15 . . . . 5 (𝜑64 ≤ 𝑁)
4033, 35, 36, 31, 39letrd 11378 . . . 4 (𝜑 → (e↑2) ≤ 𝑁)
412, 3, 7, 8, 31, 40bposlem7 27137 . . 3 (𝜑 → (64 < 𝑁 → (𝐹𝑁) < (𝐹64)))
421, 41mpd 15 . 2 (𝜑 → (𝐹𝑁) < (𝐹64))
432, 3bposlem8 27138 . . . . 5 ((𝐹64) ∈ ℝ ∧ (𝐹64) < (log‘2))
4443a1i 11 . . . 4 (𝜑 → ((𝐹64) ∈ ℝ ∧ (𝐹64) < (log‘2)))
4544simpld 494 . . 3 (𝜑 → (𝐹64) ∈ ℝ)
46 2fveq3 6896 . . . . . . . . 9 (𝑛 = 𝑁 → (𝐺‘(√‘𝑛)) = (𝐺‘(√‘𝑁)))
4746oveq2d 7428 . . . . . . . 8 (𝑛 = 𝑁 → ((√‘2) · (𝐺‘(√‘𝑛))) = ((√‘2) · (𝐺‘(√‘𝑁))))
48 fvoveq1 7435 . . . . . . . . 9 (𝑛 = 𝑁 → (𝐺‘(𝑛 / 2)) = (𝐺‘(𝑁 / 2)))
4948oveq2d 7428 . . . . . . . 8 (𝑛 = 𝑁 → ((9 / 4) · (𝐺‘(𝑛 / 2))) = ((9 / 4) · (𝐺‘(𝑁 / 2))))
5047, 49oveq12d 7430 . . . . . . 7 (𝑛 = 𝑁 → (((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) = (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))))
51 oveq2 7420 . . . . . . . . 9 (𝑛 = 𝑁 → (2 · 𝑛) = (2 · 𝑁))
5251fveq2d 6895 . . . . . . . 8 (𝑛 = 𝑁 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑁)))
5352oveq2d 7428 . . . . . . 7 (𝑛 = 𝑁 → ((log‘2) / (√‘(2 · 𝑛))) = ((log‘2) / (√‘(2 · 𝑁))))
5450, 53oveq12d 7430 . . . . . 6 (𝑛 = 𝑁 → ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
55 ovex 7445 . . . . . 6 ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))) ∈ V
5654, 2, 55fvmpt 6998 . . . . 5 (𝑁 ∈ ℕ → (𝐹𝑁) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
578, 56syl 17 . . . 4 (𝜑 → (𝐹𝑁) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
58 sqrt2re 16200 . . . . . . 7 (√‘2) ∈ ℝ
598nnrpd 13021 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ+)
6059rpsqrtcld 15365 . . . . . . . . 9 (𝜑 → (√‘𝑁) ∈ ℝ+)
61 fveq2 6891 . . . . . . . . . . 11 (𝑥 = (√‘𝑁) → (log‘𝑥) = (log‘(√‘𝑁)))
62 id 22 . . . . . . . . . . 11 (𝑥 = (√‘𝑁) → 𝑥 = (√‘𝑁))
6361, 62oveq12d 7430 . . . . . . . . . 10 (𝑥 = (√‘𝑁) → ((log‘𝑥) / 𝑥) = ((log‘(√‘𝑁)) / (√‘𝑁)))
64 ovex 7445 . . . . . . . . . 10 ((log‘(√‘𝑁)) / (√‘𝑁)) ∈ V
6563, 3, 64fvmpt 6998 . . . . . . . . 9 ((√‘𝑁) ∈ ℝ+ → (𝐺‘(√‘𝑁)) = ((log‘(√‘𝑁)) / (√‘𝑁)))
6660, 65syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(√‘𝑁)) = ((log‘(√‘𝑁)) / (√‘𝑁)))
6760relogcld 26471 . . . . . . . . 9 (𝜑 → (log‘(√‘𝑁)) ∈ ℝ)
6867, 60rerpdivcld 13054 . . . . . . . 8 (𝜑 → ((log‘(√‘𝑁)) / (√‘𝑁)) ∈ ℝ)
6966, 68eqeltrd 2832 . . . . . . 7 (𝜑 → (𝐺‘(√‘𝑁)) ∈ ℝ)
70 remulcl 11201 . . . . . . 7 (((√‘2) ∈ ℝ ∧ (𝐺‘(√‘𝑁)) ∈ ℝ) → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℝ)
7158, 69, 70sylancr 586 . . . . . 6 (𝜑 → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℝ)
72 9re 12318 . . . . . . . 8 9 ∈ ℝ
73 4re 12303 . . . . . . . 8 4 ∈ ℝ
74 4ne0 12327 . . . . . . . 8 4 ≠ 0
7572, 73, 74redivcli 11988 . . . . . . 7 (9 / 4) ∈ ℝ
7659rphalfcld 13035 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ∈ ℝ+)
77 fveq2 6891 . . . . . . . . . . 11 (𝑥 = (𝑁 / 2) → (log‘𝑥) = (log‘(𝑁 / 2)))
78 id 22 . . . . . . . . . . 11 (𝑥 = (𝑁 / 2) → 𝑥 = (𝑁 / 2))
7977, 78oveq12d 7430 . . . . . . . . . 10 (𝑥 = (𝑁 / 2) → ((log‘𝑥) / 𝑥) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
80 ovex 7445 . . . . . . . . . 10 ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ V
8179, 3, 80fvmpt 6998 . . . . . . . . 9 ((𝑁 / 2) ∈ ℝ+ → (𝐺‘(𝑁 / 2)) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
8276, 81syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(𝑁 / 2)) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
8376relogcld 26471 . . . . . . . . 9 (𝜑 → (log‘(𝑁 / 2)) ∈ ℝ)
8483, 76rerpdivcld 13054 . . . . . . . 8 (𝜑 → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℝ)
8582, 84eqeltrd 2832 . . . . . . 7 (𝜑 → (𝐺‘(𝑁 / 2)) ∈ ℝ)
86 remulcl 11201 . . . . . . 7 (((9 / 4) ∈ ℝ ∧ (𝐺‘(𝑁 / 2)) ∈ ℝ) → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℝ)
8775, 85, 86sylancr 586 . . . . . 6 (𝜑 → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℝ)
8871, 87readdcld 11250 . . . . 5 (𝜑 → (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℝ)
89 2rp 12986 . . . . . . 7 2 ∈ ℝ+
90 relogcl 26424 . . . . . . 7 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
9189, 90ax-mp 5 . . . . . 6 (log‘2) ∈ ℝ
92 rpmulcl 13004 . . . . . . . 8 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 · 𝑁) ∈ ℝ+)
9389, 59, 92sylancr 586 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
9493rpsqrtcld 15365 . . . . . 6 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ+)
95 rerpdivcl 13011 . . . . . 6 (((log‘2) ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ+) → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℝ)
9691, 94, 95sylancr 586 . . . . 5 (𝜑 → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℝ)
9788, 96readdcld 11250 . . . 4 (𝜑 → ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))) ∈ ℝ)
9857, 97eqeltrd 2832 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ)
9991a1i 11 . . . 4 (𝜑 → (log‘2) ∈ ℝ)
10044simprd 495 . . . 4 (𝜑 → (𝐹64) < (log‘2))
101 nnrp 12992 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
1025, 101ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
103 relogcl 26424 . . . . . . . . . 10 (4 ∈ ℝ+ → (log‘4) ∈ ℝ)
104102, 103ax-mp 5 . . . . . . . . 9 (log‘4) ∈ ℝ
105 remulcl 11201 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (log‘4) ∈ ℝ) → (𝑁 · (log‘4)) ∈ ℝ)
10636, 104, 105sylancl 585 . . . . . . . 8 (𝜑 → (𝑁 · (log‘4)) ∈ ℝ)
10759relogcld 26471 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
108106, 107resubcld 11649 . . . . . . 7 (𝜑 → ((𝑁 · (log‘4)) − (log‘𝑁)) ∈ ℝ)
109 rpre 12989 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℝ+ → (2 · 𝑁) ∈ ℝ)
110 rpge0 12994 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℝ+ → 0 ≤ (2 · 𝑁))
111109, 110resqrtcld 15371 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℝ+ → (√‘(2 · 𝑁)) ∈ ℝ)
11293, 111syl 17 . . . . . . . . . . 11 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
113 3nn 12298 . . . . . . . . . . 11 3 ∈ ℕ
114 nndivre 12260 . . . . . . . . . . 11 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
115112, 113, 114sylancl 585 . . . . . . . . . 10 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
116 2re 12293 . . . . . . . . . 10 2 ∈ ℝ
117 readdcl 11199 . . . . . . . . . 10 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
118115, 116, 117sylancl 585 . . . . . . . . 9 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
11993relogcld 26471 . . . . . . . . 9 (𝜑 → (log‘(2 · 𝑁)) ∈ ℝ)
120118, 119remulcld 11251 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℝ)
121 remulcl 11201 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (4 · 𝑁) ∈ ℝ)
12273, 36, 121sylancr 586 . . . . . . . . . . 11 (𝜑 → (4 · 𝑁) ∈ ℝ)
123 nndivre 12260 . . . . . . . . . . 11 (((4 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((4 · 𝑁) / 3) ∈ ℝ)
124122, 113, 123sylancl 585 . . . . . . . . . 10 (𝜑 → ((4 · 𝑁) / 3) ∈ ℝ)
125 5re 12306 . . . . . . . . . 10 5 ∈ ℝ
126 resubcl 11531 . . . . . . . . . 10 ((((4 · 𝑁) / 3) ∈ ℝ ∧ 5 ∈ ℝ) → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
127124, 125, 126sylancl 585 . . . . . . . . 9 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
128 remulcl 11201 . . . . . . . . 9 (((((4 · 𝑁) / 3) − 5) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℝ)
129127, 91, 128sylancl 585 . . . . . . . 8 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℝ)
130120, 129readdcld 11250 . . . . . . 7 (𝜑 → (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ∈ ℝ)
131 remulcl 11201 . . . . . . . . 9 ((((4 · 𝑁) / 3) ∈ ℝ ∧ (log‘2) ∈ ℝ) → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℝ)
132124, 91, 131sylancl 585 . . . . . . . 8 (𝜑 → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℝ)
133132, 107resubcld 11649 . . . . . . 7 (𝜑 → ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)) ∈ ℝ)
1348nnzd 12592 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
135 df-5 12285 . . . . . . . . . . . 12 5 = (4 + 1)
13673a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 ∈ ℝ)
137 6nn 12308 . . . . . . . . . . . . . . . 16 6 ∈ ℕ
138 4nn0 12498 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
139 4lt10 12820 . . . . . . . . . . . . . . . 16 4 < 10
140137, 138, 138, 139declti 12722 . . . . . . . . . . . . . . 15 4 < 64
141140a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 < 64)
142136, 35, 36, 141, 1lttrd 11382 . . . . . . . . . . . . 13 (𝜑 → 4 < 𝑁)
143 4z 12603 . . . . . . . . . . . . . 14 4 ∈ ℤ
144 zltp1le 12619 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (4 < 𝑁 ↔ (4 + 1) ≤ 𝑁))
145143, 134, 144sylancr 586 . . . . . . . . . . . . 13 (𝜑 → (4 < 𝑁 ↔ (4 + 1) ≤ 𝑁))
146142, 145mpbid 231 . . . . . . . . . . . 12 (𝜑 → (4 + 1) ≤ 𝑁)
147135, 146eqbrtrid 5183 . . . . . . . . . . 11 (𝜑 → 5 ≤ 𝑁)
148 5nn 12305 . . . . . . . . . . . . 13 5 ∈ ℕ
149148nnzi 12593 . . . . . . . . . . . 12 5 ∈ ℤ
150149eluz1i 12837 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘5) ↔ (𝑁 ∈ ℤ ∧ 5 ≤ 𝑁))
151134, 147, 150sylanbrc 582 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘5))
152 bposlem9.5 . . . . . . . . . . 11 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
153 breq2 5152 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑁 < 𝑝𝑁 < 𝑞))
154 breq1 5151 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑝 ≤ (2 · 𝑁) ↔ 𝑞 ≤ (2 · 𝑁)))
155153, 154anbi12d 630 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ((𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁))))
156155cbvrexvw 3234 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ ∃𝑞 ∈ ℙ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁)))
157152, 156sylnib 328 . . . . . . . . . 10 (𝜑 → ¬ ∃𝑞 ∈ ℙ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁)))
158 eqid 2731 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
159 eqid 2731 . . . . . . . . . 10 (⌊‘((2 · 𝑁) / 3)) = (⌊‘((2 · 𝑁) / 3))
160 eqid 2731 . . . . . . . . . 10 (⌊‘(√‘(2 · 𝑁))) = (⌊‘(√‘(2 · 𝑁)))
161151, 157, 158, 159, 160bposlem6 27136 . . . . . . . . 9 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
162 reexplog 26443 . . . . . . . . . . . 12 ((4 ∈ ℝ+𝑁 ∈ ℤ) → (4↑𝑁) = (exp‘(𝑁 · (log‘4))))
163102, 134, 162sylancr 586 . . . . . . . . . . 11 (𝜑 → (4↑𝑁) = (exp‘(𝑁 · (log‘4))))
16459reeflogd 26472 . . . . . . . . . . . 12 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
165164eqcomd 2737 . . . . . . . . . . 11 (𝜑𝑁 = (exp‘(log‘𝑁)))
166163, 165oveq12d 7430 . . . . . . . . . 10 (𝜑 → ((4↑𝑁) / 𝑁) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
167106recnd 11249 . . . . . . . . . . 11 (𝜑 → (𝑁 · (log‘4)) ∈ ℂ)
168107recnd 11249 . . . . . . . . . . 11 (𝜑 → (log‘𝑁) ∈ ℂ)
169 efsub 16050 . . . . . . . . . . 11 (((𝑁 · (log‘4)) ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
170167, 168, 169syl2anc 583 . . . . . . . . . 10 (𝜑 → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
171166, 170eqtr4d 2774 . . . . . . . . 9 (𝜑 → ((4↑𝑁) / 𝑁) = (exp‘((𝑁 · (log‘4)) − (log‘𝑁))))
17293rpcnd 13025 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℂ)
17393rpne0d 13028 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ≠ 0)
174118recnd 11249 . . . . . . . . . . . 12 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℂ)
175172, 173, 174cxpefd 26560 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) = (exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))))
176 2cn 12294 . . . . . . . . . . . 12 2 ∈ ℂ
177 2ne0 12323 . . . . . . . . . . . 12 2 ≠ 0
178127recnd 11249 . . . . . . . . . . . 12 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℂ)
179 cxpef 26513 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ (((4 · 𝑁) / 3) − 5) ∈ ℂ) → (2↑𝑐(((4 · 𝑁) / 3) − 5)) = (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2))))
180176, 177, 178, 179mp3an12i 1464 . . . . . . . . . . 11 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) = (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2))))
181175, 180oveq12d 7430 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
182120recnd 11249 . . . . . . . . . . 11 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℂ)
183129recnd 11249 . . . . . . . . . . 11 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℂ)
184 efadd 16044 . . . . . . . . . . 11 ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℂ ∧ ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℂ) → (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
185182, 183, 184syl2anc 583 . . . . . . . . . 10 (𝜑 → (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
186181, 185eqtr4d 2774 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) = (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))))
187161, 171, 1863brtr3d 5179 . . . . . . . 8 (𝜑 → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))))
188 eflt 16067 . . . . . . . . 9 ((((𝑁 · (log‘4)) − (log‘𝑁)) ∈ ℝ ∧ (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ∈ ℝ) → (((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ↔ (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))))
189108, 130, 188syl2anc 583 . . . . . . . 8 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ↔ (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))))
190187, 189mpbird 257 . . . . . . 7 (𝜑 → ((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))
191108, 130, 133, 190ltsub1dd 11833 . . . . . 6 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) < ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
19236recnd 11249 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
193 mulcom 11202 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) = (𝑁 · 2))
194176, 192, 193sylancr 586 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = (𝑁 · 2))
195194oveq1d 7427 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · (log‘2)) = ((𝑁 · 2) · (log‘2)))
19691recni 11235 . . . . . . . . . . . 12 (log‘2) ∈ ℂ
197 mulass 11204 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ (log‘2) ∈ ℂ) → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
198176, 196, 197mp3an23 1452 . . . . . . . . . . 11 (𝑁 ∈ ℂ → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
199192, 198syl 17 . . . . . . . . . 10 (𝜑 → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
2001962timesi 12357 . . . . . . . . . . . 12 (2 · (log‘2)) = ((log‘2) + (log‘2))
201 relogmul 26440 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (log‘(2 · 2)) = ((log‘2) + (log‘2)))
20289, 89, 201mp2an 689 . . . . . . . . . . . 12 (log‘(2 · 2)) = ((log‘2) + (log‘2))
203 2t2e4 12383 . . . . . . . . . . . . 13 (2 · 2) = 4
204203fveq2i 6894 . . . . . . . . . . . 12 (log‘(2 · 2)) = (log‘4)
205200, 202, 2043eqtr2i 2765 . . . . . . . . . . 11 (2 · (log‘2)) = (log‘4)
206205oveq2i 7423 . . . . . . . . . 10 (𝑁 · (2 · (log‘2))) = (𝑁 · (log‘4))
207199, 206eqtrdi 2787 . . . . . . . . 9 (𝜑 → ((𝑁 · 2) · (log‘2)) = (𝑁 · (log‘4)))
208195, 207eqtrd 2771 . . . . . . . 8 (𝜑 → ((2 · 𝑁) · (log‘2)) = (𝑁 · (log‘4)))
209208oveq1d 7427 . . . . . . 7 (𝜑 → (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))) = ((𝑁 · (log‘4)) − (((4 · 𝑁) / 3) · (log‘2))))
210124recnd 11249 . . . . . . . . . 10 (𝜑 → ((4 · 𝑁) / 3) ∈ ℂ)
211 3rp 12987 . . . . . . . . . . . 12 3 ∈ ℝ+
212 rpdivcl 13006 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ+ ∧ 3 ∈ ℝ+) → ((2 · 𝑁) / 3) ∈ ℝ+)
21393, 211, 212sylancl 585 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ+)
214213rpcnd 13025 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) / 3) ∈ ℂ)
215 4p2e6 12372 . . . . . . . . . . . . . 14 (4 + 2) = 6
216215oveq1i 7422 . . . . . . . . . . . . 13 ((4 + 2) · 𝑁) = (6 · 𝑁)
217 4cn 12304 . . . . . . . . . . . . . 14 4 ∈ ℂ
218 adddir 11212 . . . . . . . . . . . . . 14 ((4 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((4 + 2) · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
219217, 176, 192, 218mp3an12i 1464 . . . . . . . . . . . . 13 (𝜑 → ((4 + 2) · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
220216, 219eqtr3id 2785 . . . . . . . . . . . 12 (𝜑 → (6 · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
221220oveq1d 7427 . . . . . . . . . . 11 (𝜑 → ((6 · 𝑁) / 3) = (((4 · 𝑁) + (2 · 𝑁)) / 3))
222 6cn 12310 . . . . . . . . . . . . . 14 6 ∈ ℂ
223 3cn 12300 . . . . . . . . . . . . . . 15 3 ∈ ℂ
224 3ne0 12325 . . . . . . . . . . . . . . 15 3 ≠ 0
225223, 224pm3.2i 470 . . . . . . . . . . . . . 14 (3 ∈ ℂ ∧ 3 ≠ 0)
226 div23 11898 . . . . . . . . . . . . . 14 ((6 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
227222, 225, 226mp3an13 1451 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
228192, 227syl 17 . . . . . . . . . . . 12 (𝜑 → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
229 3t2e6 12385 . . . . . . . . . . . . . . 15 (3 · 2) = 6
230229oveq1i 7422 . . . . . . . . . . . . . 14 ((3 · 2) / 3) = (6 / 3)
231176, 223, 224divcan3i 11967 . . . . . . . . . . . . . 14 ((3 · 2) / 3) = 2
232230, 231eqtr3i 2761 . . . . . . . . . . . . 13 (6 / 3) = 2
233232oveq1i 7422 . . . . . . . . . . . 12 ((6 / 3) · 𝑁) = (2 · 𝑁)
234228, 233eqtrdi 2787 . . . . . . . . . . 11 (𝜑 → ((6 · 𝑁) / 3) = (2 · 𝑁))
235122recnd 11249 . . . . . . . . . . . 12 (𝜑 → (4 · 𝑁) ∈ ℂ)
236 remulcl 11201 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
237116, 36, 236sylancr 586 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑁) ∈ ℝ)
238237recnd 11249 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℂ)
239 divdir 11904 . . . . . . . . . . . . 13 (((4 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
240225, 239mp3an3 1449 . . . . . . . . . . . 12 (((4 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ) → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
241235, 238, 240syl2anc 583 . . . . . . . . . . 11 (𝜑 → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
242221, 234, 2413eqtr3d 2779 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
243210, 214, 242mvrladdd 11634 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) − ((4 · 𝑁) / 3)) = ((2 · 𝑁) / 3))
244243oveq1d 7427 . . . . . . . 8 (𝜑 → (((2 · 𝑁) − ((4 · 𝑁) / 3)) · (log‘2)) = (((2 · 𝑁) / 3) · (log‘2)))
24599recnd 11249 . . . . . . . . 9 (𝜑 → (log‘2) ∈ ℂ)
246238, 210, 245subdird 11678 . . . . . . . 8 (𝜑 → (((2 · 𝑁) − ((4 · 𝑁) / 3)) · (log‘2)) = (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))))
247244, 246eqtr3d 2773 . . . . . . 7 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) = (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))))
248132recnd 11249 . . . . . . . 8 (𝜑 → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℂ)
249167, 248, 168nnncan2d 11613 . . . . . . 7 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((𝑁 · (log‘4)) − (((4 · 𝑁) / 3) · (log‘2))))
250209, 247, 2493eqtr4d 2781 . . . . . 6 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) = (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
251115recnd 11249 . . . . . . . . . 10 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℂ)
252176a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
253119recnd 11249 . . . . . . . . . 10 (𝜑 → (log‘(2 · 𝑁)) ∈ ℂ)
254251, 252, 253adddird 11246 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (2 · (log‘(2 · 𝑁)))))
255 relogmul 26440 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (log‘(2 · 𝑁)) = ((log‘2) + (log‘𝑁)))
25689, 59, 255sylancr 586 . . . . . . . . . . . 12 (𝜑 → (log‘(2 · 𝑁)) = ((log‘2) + (log‘𝑁)))
257256oveq2d 7428 . . . . . . . . . . 11 (𝜑 → (2 · (log‘(2 · 𝑁))) = (2 · ((log‘2) + (log‘𝑁))))
258252, 245, 168adddid 11245 . . . . . . . . . . 11 (𝜑 → (2 · ((log‘2) + (log‘𝑁))) = ((2 · (log‘2)) + (2 · (log‘𝑁))))
259257, 258eqtrd 2771 . . . . . . . . . 10 (𝜑 → (2 · (log‘(2 · 𝑁))) = ((2 · (log‘2)) + (2 · (log‘𝑁))))
260259oveq2d 7428 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (2 · (log‘(2 · 𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))))
261254, 260eqtrd 2771 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))))
262 5cn 12307 . . . . . . . . . . . 12 5 ∈ ℂ
263262a1i 11 . . . . . . . . . . 11 (𝜑 → 5 ∈ ℂ)
264210, 263, 245subdird 11678 . . . . . . . . . 10 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) = ((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))))
265264oveq1d 7427 . . . . . . . . 9 (𝜑 → (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = (((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
266262, 196mulcli 11228 . . . . . . . . . . 11 (5 · (log‘2)) ∈ ℂ
267266a1i 11 . . . . . . . . . 10 (𝜑 → (5 · (log‘2)) ∈ ℂ)
268248, 267, 168nnncan1d 11612 . . . . . . . . 9 (𝜑 → (((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((log‘𝑁) − (5 · (log‘2))))
269265, 268eqtrd 2771 . . . . . . . 8 (𝜑 → (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((log‘𝑁) − (5 · (log‘2))))
270261, 269oveq12d 7430 . . . . . . 7 (𝜑 → (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)))) = (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))))
271133recnd 11249 . . . . . . . 8 (𝜑 → ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)) ∈ ℂ)
272182, 183, 271addsubassd 11598 . . . . . . 7 (𝜑 → ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)))))
273262, 223, 196subdiri 11671 . . . . . . . . . . . . 13 ((5 − 3) · (log‘2)) = ((5 · (log‘2)) − (3 · (log‘2)))
274 3p2e5 12370 . . . . . . . . . . . . . . . 16 (3 + 2) = 5
275274oveq1i 7422 . . . . . . . . . . . . . . 15 ((3 + 2) − 3) = (5 − 3)
276 pncan2 11474 . . . . . . . . . . . . . . . 16 ((3 ∈ ℂ ∧ 2 ∈ ℂ) → ((3 + 2) − 3) = 2)
277223, 176, 276mp2an 689 . . . . . . . . . . . . . . 15 ((3 + 2) − 3) = 2
278275, 277eqtr3i 2761 . . . . . . . . . . . . . 14 (5 − 3) = 2
279278oveq1i 7422 . . . . . . . . . . . . 13 ((5 − 3) · (log‘2)) = (2 · (log‘2))
280273, 279eqtr3i 2761 . . . . . . . . . . . 12 ((5 · (log‘2)) − (3 · (log‘2))) = (2 · (log‘2))
281280a1i 11 . . . . . . . . . . 11 (𝜑 → ((5 · (log‘2)) − (3 · (log‘2))) = (2 · (log‘2)))
282 mulcl 11200 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (2 · (log‘𝑁)) ∈ ℂ)
283176, 168, 282sylancr 586 . . . . . . . . . . . 12 (𝜑 → (2 · (log‘𝑁)) ∈ ℂ)
284 df-3 12283 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
285284oveq1i 7422 . . . . . . . . . . . . . . 15 (3 · (log‘𝑁)) = ((2 + 1) · (log‘𝑁))
286 1cnd 11216 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
287252, 286, 168adddird 11246 . . . . . . . . . . . . . . 15 (𝜑 → ((2 + 1) · (log‘𝑁)) = ((2 · (log‘𝑁)) + (1 · (log‘𝑁))))
288285, 287eqtrid 2783 . . . . . . . . . . . . . 14 (𝜑 → (3 · (log‘𝑁)) = ((2 · (log‘𝑁)) + (1 · (log‘𝑁))))
289168mullidd 11239 . . . . . . . . . . . . . . 15 (𝜑 → (1 · (log‘𝑁)) = (log‘𝑁))
290289oveq2d 7428 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (log‘𝑁)) + (1 · (log‘𝑁))) = ((2 · (log‘𝑁)) + (log‘𝑁)))
291288, 290eqtrd 2771 . . . . . . . . . . . . 13 (𝜑 → (3 · (log‘𝑁)) = ((2 · (log‘𝑁)) + (log‘𝑁)))
292291oveq1d 7427 . . . . . . . . . . . 12 (𝜑 → ((3 · (log‘𝑁)) − (5 · (log‘2))) = (((2 · (log‘𝑁)) + (log‘𝑁)) − (5 · (log‘2))))
293283, 168, 267, 292assraddsubd 11635 . . . . . . . . . . 11 (𝜑 → ((3 · (log‘𝑁)) − (5 · (log‘2))) = ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2)))))
294281, 293oveq12d 7430 . . . . . . . . . 10 (𝜑 → (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))) = ((2 · (log‘2)) + ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2))))))
295 relogdiv 26441 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (log‘(𝑁 / 2)) = ((log‘𝑁) − (log‘2)))
29659, 89, 295sylancl 585 . . . . . . . . . . . . 13 (𝜑 → (log‘(𝑁 / 2)) = ((log‘𝑁) − (log‘2)))
297296oveq2d 7428 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘(𝑁 / 2))) = (3 · ((log‘𝑁) − (log‘2))))
298 subdi 11654 . . . . . . . . . . . . . 14 ((3 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
299223, 196, 298mp3an13 1451 . . . . . . . . . . . . 13 ((log‘𝑁) ∈ ℂ → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
300168, 299syl 17 . . . . . . . . . . . 12 (𝜑 → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
301297, 300eqtrd 2771 . . . . . . . . . . 11 (𝜑 → (3 · (log‘(𝑁 / 2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
302 div23 11898 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
303176, 225, 302mp3an13 1451 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
304192, 303syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
305223, 176, 223, 176, 177, 177divmuldivi 11981 . . . . . . . . . . . . . . . . 17 ((3 / 2) · (3 / 2)) = ((3 · 3) / (2 · 2))
306 3t3e9 12386 . . . . . . . . . . . . . . . . . 18 (3 · 3) = 9
307306, 203oveq12i 7424 . . . . . . . . . . . . . . . . 17 ((3 · 3) / (2 · 2)) = (9 / 4)
308305, 307eqtr2i 2760 . . . . . . . . . . . . . . . 16 (9 / 4) = ((3 / 2) · (3 / 2))
309308a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (9 / 4) = ((3 / 2) · (3 / 2)))
310304, 309oveq12d 7430 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) / 3) · (9 / 4)) = (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))))
311176, 223, 224divcli 11963 . . . . . . . . . . . . . . 15 (2 / 3) ∈ ℂ
312223, 176, 177divcli 11963 . . . . . . . . . . . . . . . 16 (3 / 2) ∈ ℂ
313 mul4 11389 . . . . . . . . . . . . . . . 16 ((((2 / 3) ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ ((3 / 2) ∈ ℂ ∧ (3 / 2) ∈ ℂ)) → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
314312, 312, 313mpanr12 702 . . . . . . . . . . . . . . 15 (((2 / 3) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
315311, 192, 314sylancr 586 . . . . . . . . . . . . . 14 (𝜑 → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
316 divcan6 11928 . . . . . . . . . . . . . . . . . 18 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 / 3) · (3 / 2)) = 1)
317176, 177, 223, 224, 316mp4an 690 . . . . . . . . . . . . . . . . 17 ((2 / 3) · (3 / 2)) = 1
318317oveq1i 7422 . . . . . . . . . . . . . . . 16 (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (1 · (𝑁 · (3 / 2)))
319 mulcl 11200 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ (3 / 2) ∈ ℂ) → (𝑁 · (3 / 2)) ∈ ℂ)
320192, 312, 319sylancl 585 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 · (3 / 2)) ∈ ℂ)
321320mullidd 11239 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · (𝑁 · (3 / 2))) = (𝑁 · (3 / 2)))
322318, 321eqtrid 2783 . . . . . . . . . . . . . . 15 (𝜑 → (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (𝑁 · (3 / 2)))
323 2cnne0 12429 . . . . . . . . . . . . . . . . 17 (2 ∈ ℂ ∧ 2 ≠ 0)
324 div12 11901 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
325223, 323, 324mp3an23 1452 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
326192, 325syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
327322, 326eqtrd 2771 . . . . . . . . . . . . . 14 (𝜑 → (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (3 · (𝑁 / 2)))
328310, 315, 3273eqtrd 2775 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) · (9 / 4)) = (3 · (𝑁 / 2)))
329328, 82oveq12d 7430 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · (9 / 4)) · (𝐺‘(𝑁 / 2))) = ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))))
33075recni 11235 . . . . . . . . . . . . . 14 (9 / 4) ∈ ℂ
331330a1i 11 . . . . . . . . . . . . 13 (𝜑 → (9 / 4) ∈ ℂ)
33285recnd 11249 . . . . . . . . . . . . 13 (𝜑 → (𝐺‘(𝑁 / 2)) ∈ ℂ)
333214, 331, 332mulassd 11244 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · (9 / 4)) · (𝐺‘(𝑁 / 2))) = (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))
334223a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 3 ∈ ℂ)
33576rpcnd 13025 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 2) ∈ ℂ)
33683recnd 11249 . . . . . . . . . . . . . . 15 (𝜑 → (log‘(𝑁 / 2)) ∈ ℂ)
33776rpne0d 13028 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 / 2) ≠ 0)
338336, 335, 337divcld 11997 . . . . . . . . . . . . . 14 (𝜑 → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℂ)
339334, 335, 338mulassd 11244 . . . . . . . . . . . . 13 (𝜑 → ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (3 · ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2)))))
340336, 335, 337divcan2d 11999 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (log‘(𝑁 / 2)))
341340oveq2d 7428 . . . . . . . . . . . . 13 (𝜑 → (3 · ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2)))) = (3 · (log‘(𝑁 / 2))))
342339, 341eqtrd 2771 . . . . . . . . . . . 12 (𝜑 → ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (3 · (log‘(𝑁 / 2))))
343329, 333, 3423eqtr3d 2779 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (3 · (log‘(𝑁 / 2))))
344223, 196mulcli 11228 . . . . . . . . . . . . 13 (3 · (log‘2)) ∈ ℂ
345344a1i 11 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘2)) ∈ ℂ)
346 mulcl 11200 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (3 · (log‘𝑁)) ∈ ℂ)
347223, 168, 346sylancr 586 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘𝑁)) ∈ ℂ)
348267, 345, 347npncan3d 11614 . . . . . . . . . . 11 (𝜑 → (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
349301, 343, 3483eqtr4d 2781 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))))
350116, 91remulcli 11237 . . . . . . . . . . . . 13 (2 · (log‘2)) ∈ ℝ
351350recni 11235 . . . . . . . . . . . 12 (2 · (log‘2)) ∈ ℂ
352351a1i 11 . . . . . . . . . . 11 (𝜑 → (2 · (log‘2)) ∈ ℂ)
353 subcl 11466 . . . . . . . . . . . 12 (((log‘𝑁) ∈ ℂ ∧ (5 · (log‘2)) ∈ ℂ) → ((log‘𝑁) − (5 · (log‘2))) ∈ ℂ)
354168, 266, 353sylancl 585 . . . . . . . . . . 11 (𝜑 → ((log‘𝑁) − (5 · (log‘2))) ∈ ℂ)
355352, 283, 354addassd 11243 . . . . . . . . . 10 (𝜑 → (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2)))) = ((2 · (log‘2)) + ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2))))))
356294, 349, 3553eqtr4d 2781 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2)))))
357356oveq2d 7428 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2))))))
358 mulcl 11200 . . . . . . . . . . 11 ((((√‘(2 · 𝑁)) / 3) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (((√‘(2 · 𝑁)) / 3) · (log‘2)) ∈ ℂ)
359251, 196, 358sylancl 585 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘2)) ∈ ℂ)
360251, 168mulcld 11241 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) ∈ ℂ)
36187recnd 11249 . . . . . . . . . . 11 (𝜑 → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℂ)
362214, 361mulcld 11241 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℂ)
363359, 360, 362addassd 11243 . . . . . . . . 9 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
364256oveq2d 7428 . . . . . . . . . . 11 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) = (((√‘(2 · 𝑁)) / 3) · ((log‘2) + (log‘𝑁))))
365251, 245, 168adddid 11245 . . . . . . . . . . 11 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((log‘2) + (log‘𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))))
366364, 365eqtrd 2771 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))))
367366oveq1d 7427 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = (((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
36857oveq2d 7428 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = (((2 · 𝑁) / 3) · ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁))))))
36988recnd 11249 . . . . . . . . . . . 12 (𝜑 → (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℂ)
37096recnd 11249 . . . . . . . . . . . 12 (𝜑 → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℂ)
371214, 369, 370adddid 11245 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁))))) = ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))))
372368, 371eqtrd 2771 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))))
37371recnd 11249 . . . . . . . . . . . . 13 (𝜑 → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℂ)
374214, 373, 361adddid 11245 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
37593rpge0d 13027 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (2 · 𝑁))
376 remsqsqrt 15210 . . . . . . . . . . . . . . . . . 18 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
377237, 375, 376syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝜑 → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
378377oveq1d 7427 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) / 3) = ((2 · 𝑁) / 3))
379112recnd 11249 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(2 · 𝑁)) ∈ ℂ)
380224a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ≠ 0)
381379, 379, 334, 380div23d 12034 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) / 3) = (((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))))
382378, 381eqtr3d 2773 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) / 3) = (((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))))
383382oveq1d 7427 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((√‘2) · (𝐺‘(√‘𝑁)))))
384251, 379, 373mulassd 11244 . . . . . . . . . . . . . 14 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁))))))
385 0le2 12321 . . . . . . . . . . . . . . . . . . 19 0 ≤ 2
386116, 385pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (2 ∈ ℝ ∧ 0 ≤ 2)
38759rprege0d 13030 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
388 sqrtmul 15213 . . . . . . . . . . . . . . . . . 18 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) → (√‘(2 · 𝑁)) = ((√‘2) · (√‘𝑁)))
389386, 387, 388sylancr 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(2 · 𝑁)) = ((√‘2) · (√‘𝑁)))
390389oveq1d 7427 . . . . . . . . . . . . . . . 16 (𝜑 → ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘2) · (√‘𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))))
39158recni 11235 . . . . . . . . . . . . . . . . . 18 (√‘2) ∈ ℂ
392391a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘2) ∈ ℂ)
39360rpcnd 13025 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘𝑁) ∈ ℂ)
39469recnd 11249 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺‘(√‘𝑁)) ∈ ℂ)
395392, 393, 392, 394mul4d 11433 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘2) · (√‘𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))))
396 remsqsqrt 15210 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2)
397116, 385, 396mp2an 689 . . . . . . . . . . . . . . . . . . 19 ((√‘2) · (√‘2)) = 2
398397a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((√‘2) · (√‘2)) = 2)
39966oveq2d 7428 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · (𝐺‘(√‘𝑁))) = ((√‘𝑁) · ((log‘(√‘𝑁)) / (√‘𝑁))))
40067recnd 11249 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (log‘(√‘𝑁)) ∈ ℂ)
40160rpne0d 13028 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑁) ≠ 0)
402400, 393, 401divcan2d 11999 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · ((log‘(√‘𝑁)) / (√‘𝑁))) = (log‘(√‘𝑁)))
403399, 402eqtrd 2771 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((√‘𝑁) · (𝐺‘(√‘𝑁))) = (log‘(√‘𝑁)))
404398, 403oveq12d 7430 . . . . . . . . . . . . . . . . 17 (𝜑 → (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))) = (2 · (log‘(√‘𝑁))))
4054002timesd 12462 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (log‘(√‘𝑁))) = ((log‘(√‘𝑁)) + (log‘(√‘𝑁))))
40660, 60relogmuld 26473 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((√‘𝑁) · (√‘𝑁))) = ((log‘(√‘𝑁)) + (log‘(√‘𝑁))))
407 remsqsqrt 15210 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → ((√‘𝑁) · (√‘𝑁)) = 𝑁)
408387, 407syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · (√‘𝑁)) = 𝑁)
409408fveq2d 6895 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((√‘𝑁) · (√‘𝑁))) = (log‘𝑁))
410406, 409eqtr3d 2773 . . . . . . . . . . . . . . . . 17 (𝜑 → ((log‘(√‘𝑁)) + (log‘(√‘𝑁))) = (log‘𝑁))
411404, 405, 4103eqtrd 2775 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))) = (log‘𝑁))
412390, 395, 4113eqtrd 2775 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (log‘𝑁))
413412oveq2d 7428 . . . . . . . . . . . . . 14 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁))))) = (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)))
414383, 384, 4133eqtrd 2775 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)))
415414oveq1d 7427 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
416374, 415eqtrd 2771 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
417382oveq1d 7427 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((log‘2) / (√‘(2 · 𝑁)))))
418251, 379, 370mulassd 11244 . . . . . . . . . . . 12 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((log‘2) / (√‘(2 · 𝑁)))) = (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁))))))
41994rpne0d 13028 . . . . . . . . . . . . . 14 (𝜑 → (√‘(2 · 𝑁)) ≠ 0)
420245, 379, 419divcan2d 11999 . . . . . . . . . . . . 13 (𝜑 → ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁)))) = (log‘2))
421420oveq2d 7428 . . . . . . . . . . . 12 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁))))) = (((√‘(2 · 𝑁)) / 3) · (log‘2)))
422417, 418, 4213eqtrd 2775 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁)))) = (((√‘(2 · 𝑁)) / 3) · (log‘2)))
423416, 422oveq12d 7430 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))) = (((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((√‘(2 · 𝑁)) / 3) · (log‘2))))
424360, 362addcld 11240 . . . . . . . . . . 11 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) ∈ ℂ)
425424, 359addcomd 11423 . . . . . . . . . 10 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((√‘(2 · 𝑁)) / 3) · (log‘2))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
426372, 423, 4253eqtrd 2775 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
427363, 367, 4263eqtr4rd 2782 . . . . . . . 8 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
428251, 253mulcld 11241 . . . . . . . . 9 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) ∈ ℂ)
429 addcl 11198 . . . . . . . . . 10 (((2 · (log‘2)) ∈ ℂ ∧ (2 · (log‘𝑁)) ∈ ℂ) → ((2 · (log‘2)) + (2 · (log‘𝑁))) ∈ ℂ)
430351, 283, 429sylancr 586 . . . . . . . . 9 (𝜑 → ((2 · (log‘2)) + (2 · (log‘𝑁))) ∈ ℂ)
431428, 430, 354addassd 11243 . . . . . . . 8 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2))))))
432357, 427, 4313eqtr4d 2781 . . . . . . 7 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))))
433270, 272, 4323eqtr4rd 2782 . . . . . 6 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
434191, 250, 4333brtr4d 5180 . . . . 5 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) < (((2 · 𝑁) / 3) · (𝐹𝑁)))
43599, 98, 213ltmul2d 13065 . . . . 5 (𝜑 → ((log‘2) < (𝐹𝑁) ↔ (((2 · 𝑁) / 3) · (log‘2)) < (((2 · 𝑁) / 3) · (𝐹𝑁))))
436434, 435mpbird 257 . . . 4 (𝜑 → (log‘2) < (𝐹𝑁))
43745, 99, 98, 100, 436lttrd 11382 . . 3 (𝜑 → (𝐹64) < (𝐹𝑁))
43845, 98, 437ltnsymd 11370 . 2 (𝜑 → ¬ (𝐹𝑁) < (𝐹64))
43942, 438pm2.21dd 194 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wne 2939  wrex 3069  ifcif 4528   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7412  cc 11114  cr 11115  0cc0 11116  1c1 11117   + caddc 11119   · cmul 11121   < clt 11255  cle 11256  cmin 11451   / cdiv 11878  cn 12219  2c2 12274  3c3 12275  4c4 12276  5c5 12277  6c6 12278  8c8 12280  9c9 12281  cz 12565  cdc 12684  cuz 12829  +crp 12981  cfl 13762  cexp 14034  Ccbc 14269  csqrt 15187  expce 16012  eceu 16013  cprime 16615   pCnt cpc 16776  logclog 26403  𝑐ccxp 26404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-dju 9902  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-xnn0 12552  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ioc 13336  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-fac 14241  df-bc 14270  df-hash 14298  df-shft 15021  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-limsup 15422  df-clim 15439  df-rlim 15440  df-sum 15640  df-ef 16018  df-e 16019  df-sin 16020  df-cos 16021  df-pi 16023  df-dvds 16205  df-gcd 16443  df-prm 16616  df-pc 16777  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-fbas 21230  df-fg 21231  df-cnfld 21234  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cld 22843  df-ntr 22844  df-cls 22845  df-nei 22922  df-lp 22960  df-perf 22961  df-cn 23051  df-cnp 23052  df-haus 23139  df-tx 23386  df-hmeo 23579  df-fil 23670  df-fm 23762  df-flim 23763  df-flf 23764  df-xms 24146  df-ms 24147  df-tms 24148  df-cncf 24718  df-limc 25715  df-dv 25716  df-log 26405  df-cxp 26406  df-cht 26943  df-ppi 26946
This theorem is referenced by:  bpos  27140
  Copyright terms: Public domain W3C validator