MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem9 Structured version   Visualization version   GIF version

Theorem bposlem9 27203
Description: Lemma for bpos 27204. Derive a contradiction. (Contributed by Mario Carneiro, 14-Mar-2014.) (Proof shortened by AV, 15-Sep-2021.)
Hypotheses
Ref Expression
bposlem7.1 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
bposlem7.2 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
bposlem9.3 (𝜑𝑁 ∈ ℕ)
bposlem9.4 (𝜑64 < 𝑁)
bposlem9.5 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
Assertion
Ref Expression
bposlem9 (𝜑𝜓)
Distinct variable groups:   𝑛,𝑁   𝑛,𝐺   𝜑,𝑛   𝑁,𝑝   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥,𝑝)   𝜓(𝑥,𝑛,𝑝)   𝐹(𝑥,𝑛,𝑝)   𝐺(𝑥,𝑝)

Proof of Theorem bposlem9
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 bposlem9.4 . . 3 (𝜑64 < 𝑁)
2 bposlem7.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
3 bposlem7.2 . . . 4 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
4 6nn0 12463 . . . . . 6 6 ∈ ℕ0
5 4nn 12269 . . . . . 6 4 ∈ ℕ
64, 5decnncl 12669 . . . . 5 64 ∈ ℕ
76a1i 11 . . . 4 (𝜑64 ∈ ℕ)
8 bposlem9.3 . . . 4 (𝜑𝑁 ∈ ℕ)
9 ere 16055 . . . . . . . 8 e ∈ ℝ
10 8re 12282 . . . . . . . 8 8 ∈ ℝ
11 egt2lt3 16174 . . . . . . . . . 10 (2 < e ∧ e < 3)
1211simpri 485 . . . . . . . . 9 e < 3
13 3lt8 12377 . . . . . . . . 9 3 < 8
14 3re 12266 . . . . . . . . . 10 3 ∈ ℝ
159, 14, 10lttri 11300 . . . . . . . . 9 ((e < 3 ∧ 3 < 8) → e < 8)
1612, 13, 15mp2an 692 . . . . . . . 8 e < 8
179, 10, 16ltleii 11297 . . . . . . 7 e ≤ 8
18 0re 11176 . . . . . . . . 9 0 ∈ ℝ
19 epos 16175 . . . . . . . . 9 0 < e
2018, 9, 19ltleii 11297 . . . . . . . 8 0 ≤ e
21 8pos 12298 . . . . . . . . 9 0 < 8
2218, 10, 21ltleii 11297 . . . . . . . 8 0 ≤ 8
23 le2sq 14099 . . . . . . . 8 (((e ∈ ℝ ∧ 0 ≤ e) ∧ (8 ∈ ℝ ∧ 0 ≤ 8)) → (e ≤ 8 ↔ (e↑2) ≤ (8↑2)))
249, 20, 10, 22, 23mp4an 693 . . . . . . 7 (e ≤ 8 ↔ (e↑2) ≤ (8↑2))
2517, 24mpbi 230 . . . . . 6 (e↑2) ≤ (8↑2)
2610recni 11188 . . . . . . . 8 8 ∈ ℂ
2726sqvali 14145 . . . . . . 7 (8↑2) = (8 · 8)
28 8t8e64 12770 . . . . . . 7 (8 · 8) = 64
2927, 28eqtri 2752 . . . . . 6 (8↑2) = 64
3025, 29breqtri 5132 . . . . 5 (e↑2) ≤ 64
3130a1i 11 . . . 4 (𝜑 → (e↑2) ≤ 64)
329resqcli 14151 . . . . . 6 (e↑2) ∈ ℝ
3332a1i 11 . . . . 5 (𝜑 → (e↑2) ∈ ℝ)
346nnrei 12195 . . . . . 6 64 ∈ ℝ
3534a1i 11 . . . . 5 (𝜑64 ∈ ℝ)
368nnred 12201 . . . . 5 (𝜑𝑁 ∈ ℝ)
37 ltle 11262 . . . . . . 7 ((64 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (64 < 𝑁64 ≤ 𝑁))
3834, 36, 37sylancr 587 . . . . . 6 (𝜑 → (64 < 𝑁64 ≤ 𝑁))
391, 38mpd 15 . . . . 5 (𝜑64 ≤ 𝑁)
4033, 35, 36, 31, 39letrd 11331 . . . 4 (𝜑 → (e↑2) ≤ 𝑁)
412, 3, 7, 8, 31, 40bposlem7 27201 . . 3 (𝜑 → (64 < 𝑁 → (𝐹𝑁) < (𝐹64)))
421, 41mpd 15 . 2 (𝜑 → (𝐹𝑁) < (𝐹64))
432, 3bposlem8 27202 . . . . 5 ((𝐹64) ∈ ℝ ∧ (𝐹64) < (log‘2))
4443a1i 11 . . . 4 (𝜑 → ((𝐹64) ∈ ℝ ∧ (𝐹64) < (log‘2)))
4544simpld 494 . . 3 (𝜑 → (𝐹64) ∈ ℝ)
46 2fveq3 6863 . . . . . . . . 9 (𝑛 = 𝑁 → (𝐺‘(√‘𝑛)) = (𝐺‘(√‘𝑁)))
4746oveq2d 7403 . . . . . . . 8 (𝑛 = 𝑁 → ((√‘2) · (𝐺‘(√‘𝑛))) = ((√‘2) · (𝐺‘(√‘𝑁))))
48 fvoveq1 7410 . . . . . . . . 9 (𝑛 = 𝑁 → (𝐺‘(𝑛 / 2)) = (𝐺‘(𝑁 / 2)))
4948oveq2d 7403 . . . . . . . 8 (𝑛 = 𝑁 → ((9 / 4) · (𝐺‘(𝑛 / 2))) = ((9 / 4) · (𝐺‘(𝑁 / 2))))
5047, 49oveq12d 7405 . . . . . . 7 (𝑛 = 𝑁 → (((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) = (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))))
51 oveq2 7395 . . . . . . . . 9 (𝑛 = 𝑁 → (2 · 𝑛) = (2 · 𝑁))
5251fveq2d 6862 . . . . . . . 8 (𝑛 = 𝑁 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑁)))
5352oveq2d 7403 . . . . . . 7 (𝑛 = 𝑁 → ((log‘2) / (√‘(2 · 𝑛))) = ((log‘2) / (√‘(2 · 𝑁))))
5450, 53oveq12d 7405 . . . . . 6 (𝑛 = 𝑁 → ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
55 ovex 7420 . . . . . 6 ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))) ∈ V
5654, 2, 55fvmpt 6968 . . . . 5 (𝑁 ∈ ℕ → (𝐹𝑁) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
578, 56syl 17 . . . 4 (𝜑 → (𝐹𝑁) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
58 sqrt2re 16218 . . . . . . 7 (√‘2) ∈ ℝ
598nnrpd 12993 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ+)
6059rpsqrtcld 15378 . . . . . . . . 9 (𝜑 → (√‘𝑁) ∈ ℝ+)
61 fveq2 6858 . . . . . . . . . . 11 (𝑥 = (√‘𝑁) → (log‘𝑥) = (log‘(√‘𝑁)))
62 id 22 . . . . . . . . . . 11 (𝑥 = (√‘𝑁) → 𝑥 = (√‘𝑁))
6361, 62oveq12d 7405 . . . . . . . . . 10 (𝑥 = (√‘𝑁) → ((log‘𝑥) / 𝑥) = ((log‘(√‘𝑁)) / (√‘𝑁)))
64 ovex 7420 . . . . . . . . . 10 ((log‘(√‘𝑁)) / (√‘𝑁)) ∈ V
6563, 3, 64fvmpt 6968 . . . . . . . . 9 ((√‘𝑁) ∈ ℝ+ → (𝐺‘(√‘𝑁)) = ((log‘(√‘𝑁)) / (√‘𝑁)))
6660, 65syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(√‘𝑁)) = ((log‘(√‘𝑁)) / (√‘𝑁)))
6760relogcld 26532 . . . . . . . . 9 (𝜑 → (log‘(√‘𝑁)) ∈ ℝ)
6867, 60rerpdivcld 13026 . . . . . . . 8 (𝜑 → ((log‘(√‘𝑁)) / (√‘𝑁)) ∈ ℝ)
6966, 68eqeltrd 2828 . . . . . . 7 (𝜑 → (𝐺‘(√‘𝑁)) ∈ ℝ)
70 remulcl 11153 . . . . . . 7 (((√‘2) ∈ ℝ ∧ (𝐺‘(√‘𝑁)) ∈ ℝ) → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℝ)
7158, 69, 70sylancr 587 . . . . . 6 (𝜑 → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℝ)
72 9re 12285 . . . . . . . 8 9 ∈ ℝ
73 4re 12270 . . . . . . . 8 4 ∈ ℝ
74 4ne0 12294 . . . . . . . 8 4 ≠ 0
7572, 73, 74redivcli 11949 . . . . . . 7 (9 / 4) ∈ ℝ
7659rphalfcld 13007 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ∈ ℝ+)
77 fveq2 6858 . . . . . . . . . . 11 (𝑥 = (𝑁 / 2) → (log‘𝑥) = (log‘(𝑁 / 2)))
78 id 22 . . . . . . . . . . 11 (𝑥 = (𝑁 / 2) → 𝑥 = (𝑁 / 2))
7977, 78oveq12d 7405 . . . . . . . . . 10 (𝑥 = (𝑁 / 2) → ((log‘𝑥) / 𝑥) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
80 ovex 7420 . . . . . . . . . 10 ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ V
8179, 3, 80fvmpt 6968 . . . . . . . . 9 ((𝑁 / 2) ∈ ℝ+ → (𝐺‘(𝑁 / 2)) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
8276, 81syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(𝑁 / 2)) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
8376relogcld 26532 . . . . . . . . 9 (𝜑 → (log‘(𝑁 / 2)) ∈ ℝ)
8483, 76rerpdivcld 13026 . . . . . . . 8 (𝜑 → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℝ)
8582, 84eqeltrd 2828 . . . . . . 7 (𝜑 → (𝐺‘(𝑁 / 2)) ∈ ℝ)
86 remulcl 11153 . . . . . . 7 (((9 / 4) ∈ ℝ ∧ (𝐺‘(𝑁 / 2)) ∈ ℝ) → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℝ)
8775, 85, 86sylancr 587 . . . . . 6 (𝜑 → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℝ)
8871, 87readdcld 11203 . . . . 5 (𝜑 → (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℝ)
89 2rp 12956 . . . . . . 7 2 ∈ ℝ+
90 relogcl 26484 . . . . . . 7 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
9189, 90ax-mp 5 . . . . . 6 (log‘2) ∈ ℝ
92 rpmulcl 12976 . . . . . . . 8 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 · 𝑁) ∈ ℝ+)
9389, 59, 92sylancr 587 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
9493rpsqrtcld 15378 . . . . . 6 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ+)
95 rerpdivcl 12983 . . . . . 6 (((log‘2) ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ+) → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℝ)
9691, 94, 95sylancr 587 . . . . 5 (𝜑 → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℝ)
9788, 96readdcld 11203 . . . 4 (𝜑 → ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))) ∈ ℝ)
9857, 97eqeltrd 2828 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ)
9991a1i 11 . . . 4 (𝜑 → (log‘2) ∈ ℝ)
10044simprd 495 . . . 4 (𝜑 → (𝐹64) < (log‘2))
101 nnrp 12963 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
1025, 101ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
103 relogcl 26484 . . . . . . . . . 10 (4 ∈ ℝ+ → (log‘4) ∈ ℝ)
104102, 103ax-mp 5 . . . . . . . . 9 (log‘4) ∈ ℝ
105 remulcl 11153 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (log‘4) ∈ ℝ) → (𝑁 · (log‘4)) ∈ ℝ)
10636, 104, 105sylancl 586 . . . . . . . 8 (𝜑 → (𝑁 · (log‘4)) ∈ ℝ)
10759relogcld 26532 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
108106, 107resubcld 11606 . . . . . . 7 (𝜑 → ((𝑁 · (log‘4)) − (log‘𝑁)) ∈ ℝ)
109 rpre 12960 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℝ+ → (2 · 𝑁) ∈ ℝ)
110 rpge0 12965 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℝ+ → 0 ≤ (2 · 𝑁))
111109, 110resqrtcld 15384 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℝ+ → (√‘(2 · 𝑁)) ∈ ℝ)
11293, 111syl 17 . . . . . . . . . . 11 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
113 3nn 12265 . . . . . . . . . . 11 3 ∈ ℕ
114 nndivre 12227 . . . . . . . . . . 11 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
115112, 113, 114sylancl 586 . . . . . . . . . 10 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
116 2re 12260 . . . . . . . . . 10 2 ∈ ℝ
117 readdcl 11151 . . . . . . . . . 10 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
118115, 116, 117sylancl 586 . . . . . . . . 9 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
11993relogcld 26532 . . . . . . . . 9 (𝜑 → (log‘(2 · 𝑁)) ∈ ℝ)
120118, 119remulcld 11204 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℝ)
121 remulcl 11153 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (4 · 𝑁) ∈ ℝ)
12273, 36, 121sylancr 587 . . . . . . . . . . 11 (𝜑 → (4 · 𝑁) ∈ ℝ)
123 nndivre 12227 . . . . . . . . . . 11 (((4 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((4 · 𝑁) / 3) ∈ ℝ)
124122, 113, 123sylancl 586 . . . . . . . . . 10 (𝜑 → ((4 · 𝑁) / 3) ∈ ℝ)
125 5re 12273 . . . . . . . . . 10 5 ∈ ℝ
126 resubcl 11486 . . . . . . . . . 10 ((((4 · 𝑁) / 3) ∈ ℝ ∧ 5 ∈ ℝ) → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
127124, 125, 126sylancl 586 . . . . . . . . 9 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
128 remulcl 11153 . . . . . . . . 9 (((((4 · 𝑁) / 3) − 5) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℝ)
129127, 91, 128sylancl 586 . . . . . . . 8 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℝ)
130120, 129readdcld 11203 . . . . . . 7 (𝜑 → (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ∈ ℝ)
131 remulcl 11153 . . . . . . . . 9 ((((4 · 𝑁) / 3) ∈ ℝ ∧ (log‘2) ∈ ℝ) → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℝ)
132124, 91, 131sylancl 586 . . . . . . . 8 (𝜑 → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℝ)
133132, 107resubcld 11606 . . . . . . 7 (𝜑 → ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)) ∈ ℝ)
1348nnzd 12556 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
135 df-5 12252 . . . . . . . . . . . 12 5 = (4 + 1)
13673a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 ∈ ℝ)
137 6nn 12275 . . . . . . . . . . . . . . . 16 6 ∈ ℕ
138 4nn0 12461 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
139 4lt10 12785 . . . . . . . . . . . . . . . 16 4 < 10
140137, 138, 138, 139declti 12687 . . . . . . . . . . . . . . 15 4 < 64
141140a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 < 64)
142136, 35, 36, 141, 1lttrd 11335 . . . . . . . . . . . . 13 (𝜑 → 4 < 𝑁)
143 4z 12567 . . . . . . . . . . . . . 14 4 ∈ ℤ
144 zltp1le 12583 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (4 < 𝑁 ↔ (4 + 1) ≤ 𝑁))
145143, 134, 144sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (4 < 𝑁 ↔ (4 + 1) ≤ 𝑁))
146142, 145mpbid 232 . . . . . . . . . . . 12 (𝜑 → (4 + 1) ≤ 𝑁)
147135, 146eqbrtrid 5142 . . . . . . . . . . 11 (𝜑 → 5 ≤ 𝑁)
148 5nn 12272 . . . . . . . . . . . . 13 5 ∈ ℕ
149148nnzi 12557 . . . . . . . . . . . 12 5 ∈ ℤ
150149eluz1i 12801 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘5) ↔ (𝑁 ∈ ℤ ∧ 5 ≤ 𝑁))
151134, 147, 150sylanbrc 583 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘5))
152 bposlem9.5 . . . . . . . . . . 11 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
153 breq2 5111 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑁 < 𝑝𝑁 < 𝑞))
154 breq1 5110 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑝 ≤ (2 · 𝑁) ↔ 𝑞 ≤ (2 · 𝑁)))
155153, 154anbi12d 632 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ((𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁))))
156155cbvrexvw 3216 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ ∃𝑞 ∈ ℙ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁)))
157152, 156sylnib 328 . . . . . . . . . 10 (𝜑 → ¬ ∃𝑞 ∈ ℙ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁)))
158 eqid 2729 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
159 eqid 2729 . . . . . . . . . 10 (⌊‘((2 · 𝑁) / 3)) = (⌊‘((2 · 𝑁) / 3))
160 eqid 2729 . . . . . . . . . 10 (⌊‘(√‘(2 · 𝑁))) = (⌊‘(√‘(2 · 𝑁)))
161151, 157, 158, 159, 160bposlem6 27200 . . . . . . . . 9 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
162 reexplog 26504 . . . . . . . . . . . 12 ((4 ∈ ℝ+𝑁 ∈ ℤ) → (4↑𝑁) = (exp‘(𝑁 · (log‘4))))
163102, 134, 162sylancr 587 . . . . . . . . . . 11 (𝜑 → (4↑𝑁) = (exp‘(𝑁 · (log‘4))))
16459reeflogd 26533 . . . . . . . . . . . 12 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
165164eqcomd 2735 . . . . . . . . . . 11 (𝜑𝑁 = (exp‘(log‘𝑁)))
166163, 165oveq12d 7405 . . . . . . . . . 10 (𝜑 → ((4↑𝑁) / 𝑁) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
167106recnd 11202 . . . . . . . . . . 11 (𝜑 → (𝑁 · (log‘4)) ∈ ℂ)
168107recnd 11202 . . . . . . . . . . 11 (𝜑 → (log‘𝑁) ∈ ℂ)
169 efsub 16068 . . . . . . . . . . 11 (((𝑁 · (log‘4)) ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
170167, 168, 169syl2anc 584 . . . . . . . . . 10 (𝜑 → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
171166, 170eqtr4d 2767 . . . . . . . . 9 (𝜑 → ((4↑𝑁) / 𝑁) = (exp‘((𝑁 · (log‘4)) − (log‘𝑁))))
17293rpcnd 12997 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℂ)
17393rpne0d 13000 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ≠ 0)
174118recnd 11202 . . . . . . . . . . . 12 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℂ)
175172, 173, 174cxpefd 26621 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) = (exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))))
176 2cn 12261 . . . . . . . . . . . 12 2 ∈ ℂ
177 2ne0 12290 . . . . . . . . . . . 12 2 ≠ 0
178127recnd 11202 . . . . . . . . . . . 12 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℂ)
179 cxpef 26574 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ (((4 · 𝑁) / 3) − 5) ∈ ℂ) → (2↑𝑐(((4 · 𝑁) / 3) − 5)) = (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2))))
180176, 177, 178, 179mp3an12i 1467 . . . . . . . . . . 11 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) = (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2))))
181175, 180oveq12d 7405 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
182120recnd 11202 . . . . . . . . . . 11 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℂ)
183129recnd 11202 . . . . . . . . . . 11 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℂ)
184 efadd 16060 . . . . . . . . . . 11 ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℂ ∧ ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℂ) → (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
185182, 183, 184syl2anc 584 . . . . . . . . . 10 (𝜑 → (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
186181, 185eqtr4d 2767 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) = (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))))
187161, 171, 1863brtr3d 5138 . . . . . . . 8 (𝜑 → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))))
188 eflt 16085 . . . . . . . . 9 ((((𝑁 · (log‘4)) − (log‘𝑁)) ∈ ℝ ∧ (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ∈ ℝ) → (((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ↔ (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))))
189108, 130, 188syl2anc 584 . . . . . . . 8 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ↔ (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))))
190187, 189mpbird 257 . . . . . . 7 (𝜑 → ((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))
191108, 130, 133, 190ltsub1dd 11790 . . . . . 6 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) < ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
19236recnd 11202 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
193 mulcom 11154 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) = (𝑁 · 2))
194176, 192, 193sylancr 587 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = (𝑁 · 2))
195194oveq1d 7402 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · (log‘2)) = ((𝑁 · 2) · (log‘2)))
19691recni 11188 . . . . . . . . . . . 12 (log‘2) ∈ ℂ
197 mulass 11156 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ (log‘2) ∈ ℂ) → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
198176, 196, 197mp3an23 1455 . . . . . . . . . . 11 (𝑁 ∈ ℂ → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
199192, 198syl 17 . . . . . . . . . 10 (𝜑 → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
2001962timesi 12319 . . . . . . . . . . . 12 (2 · (log‘2)) = ((log‘2) + (log‘2))
201 relogmul 26501 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (log‘(2 · 2)) = ((log‘2) + (log‘2)))
20289, 89, 201mp2an 692 . . . . . . . . . . . 12 (log‘(2 · 2)) = ((log‘2) + (log‘2))
203 2t2e4 12345 . . . . . . . . . . . . 13 (2 · 2) = 4
204203fveq2i 6861 . . . . . . . . . . . 12 (log‘(2 · 2)) = (log‘4)
205200, 202, 2043eqtr2i 2758 . . . . . . . . . . 11 (2 · (log‘2)) = (log‘4)
206205oveq2i 7398 . . . . . . . . . 10 (𝑁 · (2 · (log‘2))) = (𝑁 · (log‘4))
207199, 206eqtrdi 2780 . . . . . . . . 9 (𝜑 → ((𝑁 · 2) · (log‘2)) = (𝑁 · (log‘4)))
208195, 207eqtrd 2764 . . . . . . . 8 (𝜑 → ((2 · 𝑁) · (log‘2)) = (𝑁 · (log‘4)))
209208oveq1d 7402 . . . . . . 7 (𝜑 → (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))) = ((𝑁 · (log‘4)) − (((4 · 𝑁) / 3) · (log‘2))))
210124recnd 11202 . . . . . . . . . 10 (𝜑 → ((4 · 𝑁) / 3) ∈ ℂ)
211 3rp 12957 . . . . . . . . . . . 12 3 ∈ ℝ+
212 rpdivcl 12978 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ+ ∧ 3 ∈ ℝ+) → ((2 · 𝑁) / 3) ∈ ℝ+)
21393, 211, 212sylancl 586 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ+)
214213rpcnd 12997 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) / 3) ∈ ℂ)
215 4p2e6 12334 . . . . . . . . . . . . . 14 (4 + 2) = 6
216215oveq1i 7397 . . . . . . . . . . . . 13 ((4 + 2) · 𝑁) = (6 · 𝑁)
217 4cn 12271 . . . . . . . . . . . . . 14 4 ∈ ℂ
218 adddir 11165 . . . . . . . . . . . . . 14 ((4 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((4 + 2) · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
219217, 176, 192, 218mp3an12i 1467 . . . . . . . . . . . . 13 (𝜑 → ((4 + 2) · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
220216, 219eqtr3id 2778 . . . . . . . . . . . 12 (𝜑 → (6 · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
221220oveq1d 7402 . . . . . . . . . . 11 (𝜑 → ((6 · 𝑁) / 3) = (((4 · 𝑁) + (2 · 𝑁)) / 3))
222 6cn 12277 . . . . . . . . . . . . . 14 6 ∈ ℂ
223 3cn 12267 . . . . . . . . . . . . . . 15 3 ∈ ℂ
224 3ne0 12292 . . . . . . . . . . . . . . 15 3 ≠ 0
225223, 224pm3.2i 470 . . . . . . . . . . . . . 14 (3 ∈ ℂ ∧ 3 ≠ 0)
226 div23 11856 . . . . . . . . . . . . . 14 ((6 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
227222, 225, 226mp3an13 1454 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
228192, 227syl 17 . . . . . . . . . . . 12 (𝜑 → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
229 3t2e6 12347 . . . . . . . . . . . . . . 15 (3 · 2) = 6
230229oveq1i 7397 . . . . . . . . . . . . . 14 ((3 · 2) / 3) = (6 / 3)
231176, 223, 224divcan3i 11928 . . . . . . . . . . . . . 14 ((3 · 2) / 3) = 2
232230, 231eqtr3i 2754 . . . . . . . . . . . . 13 (6 / 3) = 2
233232oveq1i 7397 . . . . . . . . . . . 12 ((6 / 3) · 𝑁) = (2 · 𝑁)
234228, 233eqtrdi 2780 . . . . . . . . . . 11 (𝜑 → ((6 · 𝑁) / 3) = (2 · 𝑁))
235122recnd 11202 . . . . . . . . . . . 12 (𝜑 → (4 · 𝑁) ∈ ℂ)
236 remulcl 11153 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
237116, 36, 236sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑁) ∈ ℝ)
238237recnd 11202 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℂ)
239 divdir 11862 . . . . . . . . . . . . 13 (((4 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
240225, 239mp3an3 1452 . . . . . . . . . . . 12 (((4 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ) → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
241235, 238, 240syl2anc 584 . . . . . . . . . . 11 (𝜑 → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
242221, 234, 2413eqtr3d 2772 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
243210, 214, 242mvrladdd 11591 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) − ((4 · 𝑁) / 3)) = ((2 · 𝑁) / 3))
244243oveq1d 7402 . . . . . . . 8 (𝜑 → (((2 · 𝑁) − ((4 · 𝑁) / 3)) · (log‘2)) = (((2 · 𝑁) / 3) · (log‘2)))
24599recnd 11202 . . . . . . . . 9 (𝜑 → (log‘2) ∈ ℂ)
246238, 210, 245subdird 11635 . . . . . . . 8 (𝜑 → (((2 · 𝑁) − ((4 · 𝑁) / 3)) · (log‘2)) = (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))))
247244, 246eqtr3d 2766 . . . . . . 7 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) = (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))))
248132recnd 11202 . . . . . . . 8 (𝜑 → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℂ)
249167, 248, 168nnncan2d 11568 . . . . . . 7 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((𝑁 · (log‘4)) − (((4 · 𝑁) / 3) · (log‘2))))
250209, 247, 2493eqtr4d 2774 . . . . . 6 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) = (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
251115recnd 11202 . . . . . . . . . 10 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℂ)
252176a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
253119recnd 11202 . . . . . . . . . 10 (𝜑 → (log‘(2 · 𝑁)) ∈ ℂ)
254251, 252, 253adddird 11199 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (2 · (log‘(2 · 𝑁)))))
255 relogmul 26501 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (log‘(2 · 𝑁)) = ((log‘2) + (log‘𝑁)))
25689, 59, 255sylancr 587 . . . . . . . . . . . 12 (𝜑 → (log‘(2 · 𝑁)) = ((log‘2) + (log‘𝑁)))
257256oveq2d 7403 . . . . . . . . . . 11 (𝜑 → (2 · (log‘(2 · 𝑁))) = (2 · ((log‘2) + (log‘𝑁))))
258252, 245, 168adddid 11198 . . . . . . . . . . 11 (𝜑 → (2 · ((log‘2) + (log‘𝑁))) = ((2 · (log‘2)) + (2 · (log‘𝑁))))
259257, 258eqtrd 2764 . . . . . . . . . 10 (𝜑 → (2 · (log‘(2 · 𝑁))) = ((2 · (log‘2)) + (2 · (log‘𝑁))))
260259oveq2d 7403 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (2 · (log‘(2 · 𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))))
261254, 260eqtrd 2764 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))))
262 5cn 12274 . . . . . . . . . . . 12 5 ∈ ℂ
263262a1i 11 . . . . . . . . . . 11 (𝜑 → 5 ∈ ℂ)
264210, 263, 245subdird 11635 . . . . . . . . . 10 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) = ((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))))
265264oveq1d 7402 . . . . . . . . 9 (𝜑 → (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = (((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
266262, 196mulcli 11181 . . . . . . . . . . 11 (5 · (log‘2)) ∈ ℂ
267266a1i 11 . . . . . . . . . 10 (𝜑 → (5 · (log‘2)) ∈ ℂ)
268248, 267, 168nnncan1d 11567 . . . . . . . . 9 (𝜑 → (((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((log‘𝑁) − (5 · (log‘2))))
269265, 268eqtrd 2764 . . . . . . . 8 (𝜑 → (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((log‘𝑁) − (5 · (log‘2))))
270261, 269oveq12d 7405 . . . . . . 7 (𝜑 → (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)))) = (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))))
271133recnd 11202 . . . . . . . 8 (𝜑 → ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)) ∈ ℂ)
272182, 183, 271addsubassd 11553 . . . . . . 7 (𝜑 → ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)))))
273262, 223, 196subdiri 11628 . . . . . . . . . . . . 13 ((5 − 3) · (log‘2)) = ((5 · (log‘2)) − (3 · (log‘2)))
274 3p2e5 12332 . . . . . . . . . . . . . . . 16 (3 + 2) = 5
275274oveq1i 7397 . . . . . . . . . . . . . . 15 ((3 + 2) − 3) = (5 − 3)
276 pncan2 11428 . . . . . . . . . . . . . . . 16 ((3 ∈ ℂ ∧ 2 ∈ ℂ) → ((3 + 2) − 3) = 2)
277223, 176, 276mp2an 692 . . . . . . . . . . . . . . 15 ((3 + 2) − 3) = 2
278275, 277eqtr3i 2754 . . . . . . . . . . . . . 14 (5 − 3) = 2
279278oveq1i 7397 . . . . . . . . . . . . 13 ((5 − 3) · (log‘2)) = (2 · (log‘2))
280273, 279eqtr3i 2754 . . . . . . . . . . . 12 ((5 · (log‘2)) − (3 · (log‘2))) = (2 · (log‘2))
281280a1i 11 . . . . . . . . . . 11 (𝜑 → ((5 · (log‘2)) − (3 · (log‘2))) = (2 · (log‘2)))
282 mulcl 11152 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (2 · (log‘𝑁)) ∈ ℂ)
283176, 168, 282sylancr 587 . . . . . . . . . . . 12 (𝜑 → (2 · (log‘𝑁)) ∈ ℂ)
284 df-3 12250 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
285284oveq1i 7397 . . . . . . . . . . . . . . 15 (3 · (log‘𝑁)) = ((2 + 1) · (log‘𝑁))
286 1cnd 11169 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
287252, 286, 168adddird 11199 . . . . . . . . . . . . . . 15 (𝜑 → ((2 + 1) · (log‘𝑁)) = ((2 · (log‘𝑁)) + (1 · (log‘𝑁))))
288285, 287eqtrid 2776 . . . . . . . . . . . . . 14 (𝜑 → (3 · (log‘𝑁)) = ((2 · (log‘𝑁)) + (1 · (log‘𝑁))))
289168mullidd 11192 . . . . . . . . . . . . . . 15 (𝜑 → (1 · (log‘𝑁)) = (log‘𝑁))
290289oveq2d 7403 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (log‘𝑁)) + (1 · (log‘𝑁))) = ((2 · (log‘𝑁)) + (log‘𝑁)))
291288, 290eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (3 · (log‘𝑁)) = ((2 · (log‘𝑁)) + (log‘𝑁)))
292291oveq1d 7402 . . . . . . . . . . . 12 (𝜑 → ((3 · (log‘𝑁)) − (5 · (log‘2))) = (((2 · (log‘𝑁)) + (log‘𝑁)) − (5 · (log‘2))))
293283, 168, 267, 292assraddsubd 11592 . . . . . . . . . . 11 (𝜑 → ((3 · (log‘𝑁)) − (5 · (log‘2))) = ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2)))))
294281, 293oveq12d 7405 . . . . . . . . . 10 (𝜑 → (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))) = ((2 · (log‘2)) + ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2))))))
295 relogdiv 26502 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (log‘(𝑁 / 2)) = ((log‘𝑁) − (log‘2)))
29659, 89, 295sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (log‘(𝑁 / 2)) = ((log‘𝑁) − (log‘2)))
297296oveq2d 7403 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘(𝑁 / 2))) = (3 · ((log‘𝑁) − (log‘2))))
298 subdi 11611 . . . . . . . . . . . . . 14 ((3 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
299223, 196, 298mp3an13 1454 . . . . . . . . . . . . 13 ((log‘𝑁) ∈ ℂ → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
300168, 299syl 17 . . . . . . . . . . . 12 (𝜑 → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
301297, 300eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (3 · (log‘(𝑁 / 2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
302 div23 11856 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
303176, 225, 302mp3an13 1454 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
304192, 303syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
305223, 176, 223, 176, 177, 177divmuldivi 11942 . . . . . . . . . . . . . . . . 17 ((3 / 2) · (3 / 2)) = ((3 · 3) / (2 · 2))
306 3t3e9 12348 . . . . . . . . . . . . . . . . . 18 (3 · 3) = 9
307306, 203oveq12i 7399 . . . . . . . . . . . . . . . . 17 ((3 · 3) / (2 · 2)) = (9 / 4)
308305, 307eqtr2i 2753 . . . . . . . . . . . . . . . 16 (9 / 4) = ((3 / 2) · (3 / 2))
309308a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (9 / 4) = ((3 / 2) · (3 / 2)))
310304, 309oveq12d 7405 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) / 3) · (9 / 4)) = (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))))
311176, 223, 224divcli 11924 . . . . . . . . . . . . . . 15 (2 / 3) ∈ ℂ
312223, 176, 177divcli 11924 . . . . . . . . . . . . . . . 16 (3 / 2) ∈ ℂ
313 mul4 11342 . . . . . . . . . . . . . . . 16 ((((2 / 3) ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ ((3 / 2) ∈ ℂ ∧ (3 / 2) ∈ ℂ)) → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
314312, 312, 313mpanr12 705 . . . . . . . . . . . . . . 15 (((2 / 3) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
315311, 192, 314sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
316 divcan6 11889 . . . . . . . . . . . . . . . . . 18 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 / 3) · (3 / 2)) = 1)
317176, 177, 223, 224, 316mp4an 693 . . . . . . . . . . . . . . . . 17 ((2 / 3) · (3 / 2)) = 1
318317oveq1i 7397 . . . . . . . . . . . . . . . 16 (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (1 · (𝑁 · (3 / 2)))
319 mulcl 11152 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ (3 / 2) ∈ ℂ) → (𝑁 · (3 / 2)) ∈ ℂ)
320192, 312, 319sylancl 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 · (3 / 2)) ∈ ℂ)
321320mullidd 11192 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · (𝑁 · (3 / 2))) = (𝑁 · (3 / 2)))
322318, 321eqtrid 2776 . . . . . . . . . . . . . . 15 (𝜑 → (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (𝑁 · (3 / 2)))
323 2cnne0 12391 . . . . . . . . . . . . . . . . 17 (2 ∈ ℂ ∧ 2 ≠ 0)
324 div12 11859 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
325223, 323, 324mp3an23 1455 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
326192, 325syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
327322, 326eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (3 · (𝑁 / 2)))
328310, 315, 3273eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) · (9 / 4)) = (3 · (𝑁 / 2)))
329328, 82oveq12d 7405 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · (9 / 4)) · (𝐺‘(𝑁 / 2))) = ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))))
33075recni 11188 . . . . . . . . . . . . . 14 (9 / 4) ∈ ℂ
331330a1i 11 . . . . . . . . . . . . 13 (𝜑 → (9 / 4) ∈ ℂ)
33285recnd 11202 . . . . . . . . . . . . 13 (𝜑 → (𝐺‘(𝑁 / 2)) ∈ ℂ)
333214, 331, 332mulassd 11197 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · (9 / 4)) · (𝐺‘(𝑁 / 2))) = (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))
334223a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 3 ∈ ℂ)
33576rpcnd 12997 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 2) ∈ ℂ)
33683recnd 11202 . . . . . . . . . . . . . . 15 (𝜑 → (log‘(𝑁 / 2)) ∈ ℂ)
33776rpne0d 13000 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 / 2) ≠ 0)
338336, 335, 337divcld 11958 . . . . . . . . . . . . . 14 (𝜑 → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℂ)
339334, 335, 338mulassd 11197 . . . . . . . . . . . . 13 (𝜑 → ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (3 · ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2)))))
340336, 335, 337divcan2d 11960 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (log‘(𝑁 / 2)))
341340oveq2d 7403 . . . . . . . . . . . . 13 (𝜑 → (3 · ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2)))) = (3 · (log‘(𝑁 / 2))))
342339, 341eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (3 · (log‘(𝑁 / 2))))
343329, 333, 3423eqtr3d 2772 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (3 · (log‘(𝑁 / 2))))
344223, 196mulcli 11181 . . . . . . . . . . . . 13 (3 · (log‘2)) ∈ ℂ
345344a1i 11 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘2)) ∈ ℂ)
346 mulcl 11152 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (3 · (log‘𝑁)) ∈ ℂ)
347223, 168, 346sylancr 587 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘𝑁)) ∈ ℂ)
348267, 345, 347npncan3d 11569 . . . . . . . . . . 11 (𝜑 → (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
349301, 343, 3483eqtr4d 2774 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))))
350116, 91remulcli 11190 . . . . . . . . . . . . 13 (2 · (log‘2)) ∈ ℝ
351350recni 11188 . . . . . . . . . . . 12 (2 · (log‘2)) ∈ ℂ
352351a1i 11 . . . . . . . . . . 11 (𝜑 → (2 · (log‘2)) ∈ ℂ)
353 subcl 11420 . . . . . . . . . . . 12 (((log‘𝑁) ∈ ℂ ∧ (5 · (log‘2)) ∈ ℂ) → ((log‘𝑁) − (5 · (log‘2))) ∈ ℂ)
354168, 266, 353sylancl 586 . . . . . . . . . . 11 (𝜑 → ((log‘𝑁) − (5 · (log‘2))) ∈ ℂ)
355352, 283, 354addassd 11196 . . . . . . . . . 10 (𝜑 → (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2)))) = ((2 · (log‘2)) + ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2))))))
356294, 349, 3553eqtr4d 2774 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2)))))
357356oveq2d 7403 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2))))))
358 mulcl 11152 . . . . . . . . . . 11 ((((√‘(2 · 𝑁)) / 3) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (((√‘(2 · 𝑁)) / 3) · (log‘2)) ∈ ℂ)
359251, 196, 358sylancl 586 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘2)) ∈ ℂ)
360251, 168mulcld 11194 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) ∈ ℂ)
36187recnd 11202 . . . . . . . . . . 11 (𝜑 → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℂ)
362214, 361mulcld 11194 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℂ)
363359, 360, 362addassd 11196 . . . . . . . . 9 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
364256oveq2d 7403 . . . . . . . . . . 11 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) = (((√‘(2 · 𝑁)) / 3) · ((log‘2) + (log‘𝑁))))
365251, 245, 168adddid 11198 . . . . . . . . . . 11 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((log‘2) + (log‘𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))))
366364, 365eqtrd 2764 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))))
367366oveq1d 7402 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = (((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
36857oveq2d 7403 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = (((2 · 𝑁) / 3) · ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁))))))
36988recnd 11202 . . . . . . . . . . . 12 (𝜑 → (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℂ)
37096recnd 11202 . . . . . . . . . . . 12 (𝜑 → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℂ)
371214, 369, 370adddid 11198 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁))))) = ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))))
372368, 371eqtrd 2764 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))))
37371recnd 11202 . . . . . . . . . . . . 13 (𝜑 → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℂ)
374214, 373, 361adddid 11198 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
37593rpge0d 12999 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (2 · 𝑁))
376 remsqsqrt 15222 . . . . . . . . . . . . . . . . . 18 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
377237, 375, 376syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
378377oveq1d 7402 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) / 3) = ((2 · 𝑁) / 3))
379112recnd 11202 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(2 · 𝑁)) ∈ ℂ)
380224a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ≠ 0)
381379, 379, 334, 380div23d 11995 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) / 3) = (((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))))
382378, 381eqtr3d 2766 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) / 3) = (((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))))
383382oveq1d 7402 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((√‘2) · (𝐺‘(√‘𝑁)))))
384251, 379, 373mulassd 11197 . . . . . . . . . . . . . 14 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁))))))
385 0le2 12288 . . . . . . . . . . . . . . . . . . 19 0 ≤ 2
386116, 385pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (2 ∈ ℝ ∧ 0 ≤ 2)
38759rprege0d 13002 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
388 sqrtmul 15225 . . . . . . . . . . . . . . . . . 18 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) → (√‘(2 · 𝑁)) = ((√‘2) · (√‘𝑁)))
389386, 387, 388sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(2 · 𝑁)) = ((√‘2) · (√‘𝑁)))
390389oveq1d 7402 . . . . . . . . . . . . . . . 16 (𝜑 → ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘2) · (√‘𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))))
39158recni 11188 . . . . . . . . . . . . . . . . . 18 (√‘2) ∈ ℂ
392391a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘2) ∈ ℂ)
39360rpcnd 12997 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘𝑁) ∈ ℂ)
39469recnd 11202 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺‘(√‘𝑁)) ∈ ℂ)
395392, 393, 392, 394mul4d 11386 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘2) · (√‘𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))))
396 remsqsqrt 15222 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2)
397116, 385, 396mp2an 692 . . . . . . . . . . . . . . . . . . 19 ((√‘2) · (√‘2)) = 2
398397a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((√‘2) · (√‘2)) = 2)
39966oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · (𝐺‘(√‘𝑁))) = ((√‘𝑁) · ((log‘(√‘𝑁)) / (√‘𝑁))))
40067recnd 11202 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (log‘(√‘𝑁)) ∈ ℂ)
40160rpne0d 13000 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑁) ≠ 0)
402400, 393, 401divcan2d 11960 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · ((log‘(√‘𝑁)) / (√‘𝑁))) = (log‘(√‘𝑁)))
403399, 402eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((√‘𝑁) · (𝐺‘(√‘𝑁))) = (log‘(√‘𝑁)))
404398, 403oveq12d 7405 . . . . . . . . . . . . . . . . 17 (𝜑 → (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))) = (2 · (log‘(√‘𝑁))))
4054002timesd 12425 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (log‘(√‘𝑁))) = ((log‘(√‘𝑁)) + (log‘(√‘𝑁))))
40660, 60relogmuld 26534 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((√‘𝑁) · (√‘𝑁))) = ((log‘(√‘𝑁)) + (log‘(√‘𝑁))))
407 remsqsqrt 15222 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → ((√‘𝑁) · (√‘𝑁)) = 𝑁)
408387, 407syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · (√‘𝑁)) = 𝑁)
409408fveq2d 6862 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((√‘𝑁) · (√‘𝑁))) = (log‘𝑁))
410406, 409eqtr3d 2766 . . . . . . . . . . . . . . . . 17 (𝜑 → ((log‘(√‘𝑁)) + (log‘(√‘𝑁))) = (log‘𝑁))
411404, 405, 4103eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))) = (log‘𝑁))
412390, 395, 4113eqtrd 2768 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (log‘𝑁))
413412oveq2d 7403 . . . . . . . . . . . . . 14 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁))))) = (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)))
414383, 384, 4133eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)))
415414oveq1d 7402 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
416374, 415eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
417382oveq1d 7402 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((log‘2) / (√‘(2 · 𝑁)))))
418251, 379, 370mulassd 11197 . . . . . . . . . . . 12 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((log‘2) / (√‘(2 · 𝑁)))) = (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁))))))
41994rpne0d 13000 . . . . . . . . . . . . . 14 (𝜑 → (√‘(2 · 𝑁)) ≠ 0)
420245, 379, 419divcan2d 11960 . . . . . . . . . . . . 13 (𝜑 → ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁)))) = (log‘2))
421420oveq2d 7403 . . . . . . . . . . . 12 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁))))) = (((√‘(2 · 𝑁)) / 3) · (log‘2)))
422417, 418, 4213eqtrd 2768 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁)))) = (((√‘(2 · 𝑁)) / 3) · (log‘2)))
423416, 422oveq12d 7405 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))) = (((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((√‘(2 · 𝑁)) / 3) · (log‘2))))
424360, 362addcld 11193 . . . . . . . . . . 11 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) ∈ ℂ)
425424, 359addcomd 11376 . . . . . . . . . 10 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((√‘(2 · 𝑁)) / 3) · (log‘2))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
426372, 423, 4253eqtrd 2768 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
427363, 367, 4263eqtr4rd 2775 . . . . . . . 8 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
428251, 253mulcld 11194 . . . . . . . . 9 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) ∈ ℂ)
429 addcl 11150 . . . . . . . . . 10 (((2 · (log‘2)) ∈ ℂ ∧ (2 · (log‘𝑁)) ∈ ℂ) → ((2 · (log‘2)) + (2 · (log‘𝑁))) ∈ ℂ)
430351, 283, 429sylancr 587 . . . . . . . . 9 (𝜑 → ((2 · (log‘2)) + (2 · (log‘𝑁))) ∈ ℂ)
431428, 430, 354addassd 11196 . . . . . . . 8 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2))))))
432357, 427, 4313eqtr4d 2774 . . . . . . 7 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))))
433270, 272, 4323eqtr4rd 2775 . . . . . 6 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
434191, 250, 4333brtr4d 5139 . . . . 5 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) < (((2 · 𝑁) / 3) · (𝐹𝑁)))
43599, 98, 213ltmul2d 13037 . . . . 5 (𝜑 → ((log‘2) < (𝐹𝑁) ↔ (((2 · 𝑁) / 3) · (log‘2)) < (((2 · 𝑁) / 3) · (𝐹𝑁))))
436434, 435mpbird 257 . . . 4 (𝜑 → (log‘2) < (𝐹𝑁))
43745, 99, 98, 100, 436lttrd 11335 . . 3 (𝜑 → (𝐹64) < (𝐹𝑁))
43845, 98, 437ltnsymd 11323 . 2 (𝜑 → ¬ (𝐹𝑁) < (𝐹64))
43942, 438pm2.21dd 195 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  ifcif 4488   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  4c4 12243  5c5 12244  6c6 12245  8c8 12247  9c9 12248  cz 12529  cdc 12649  cuz 12793  +crp 12951  cfl 13752  cexp 14026  Ccbc 14267  csqrt 15199  expce 16027  eceu 16028  cprime 16641   pCnt cpc 16807  logclog 26463  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-cht 27007  df-ppi 27010
This theorem is referenced by:  bpos  27204
  Copyright terms: Public domain W3C validator