MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem9 Structured version   Visualization version   GIF version

Theorem bposlem9 27210
Description: Lemma for bpos 27211. Derive a contradiction. (Contributed by Mario Carneiro, 14-Mar-2014.) (Proof shortened by AV, 15-Sep-2021.)
Hypotheses
Ref Expression
bposlem7.1 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
bposlem7.2 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
bposlem9.3 (𝜑𝑁 ∈ ℕ)
bposlem9.4 (𝜑64 < 𝑁)
bposlem9.5 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
Assertion
Ref Expression
bposlem9 (𝜑𝜓)
Distinct variable groups:   𝑛,𝑁   𝑛,𝐺   𝜑,𝑛   𝑁,𝑝   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥,𝑝)   𝜓(𝑥,𝑛,𝑝)   𝐹(𝑥,𝑛,𝑝)   𝐺(𝑥,𝑝)

Proof of Theorem bposlem9
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 bposlem9.4 . . 3 (𝜑64 < 𝑁)
2 bposlem7.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
3 bposlem7.2 . . . 4 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
4 6nn0 12470 . . . . . 6 6 ∈ ℕ0
5 4nn 12276 . . . . . 6 4 ∈ ℕ
64, 5decnncl 12676 . . . . 5 64 ∈ ℕ
76a1i 11 . . . 4 (𝜑64 ∈ ℕ)
8 bposlem9.3 . . . 4 (𝜑𝑁 ∈ ℕ)
9 ere 16062 . . . . . . . 8 e ∈ ℝ
10 8re 12289 . . . . . . . 8 8 ∈ ℝ
11 egt2lt3 16181 . . . . . . . . . 10 (2 < e ∧ e < 3)
1211simpri 485 . . . . . . . . 9 e < 3
13 3lt8 12384 . . . . . . . . 9 3 < 8
14 3re 12273 . . . . . . . . . 10 3 ∈ ℝ
159, 14, 10lttri 11307 . . . . . . . . 9 ((e < 3 ∧ 3 < 8) → e < 8)
1612, 13, 15mp2an 692 . . . . . . . 8 e < 8
179, 10, 16ltleii 11304 . . . . . . 7 e ≤ 8
18 0re 11183 . . . . . . . . 9 0 ∈ ℝ
19 epos 16182 . . . . . . . . 9 0 < e
2018, 9, 19ltleii 11304 . . . . . . . 8 0 ≤ e
21 8pos 12305 . . . . . . . . 9 0 < 8
2218, 10, 21ltleii 11304 . . . . . . . 8 0 ≤ 8
23 le2sq 14106 . . . . . . . 8 (((e ∈ ℝ ∧ 0 ≤ e) ∧ (8 ∈ ℝ ∧ 0 ≤ 8)) → (e ≤ 8 ↔ (e↑2) ≤ (8↑2)))
249, 20, 10, 22, 23mp4an 693 . . . . . . 7 (e ≤ 8 ↔ (e↑2) ≤ (8↑2))
2517, 24mpbi 230 . . . . . 6 (e↑2) ≤ (8↑2)
2610recni 11195 . . . . . . . 8 8 ∈ ℂ
2726sqvali 14152 . . . . . . 7 (8↑2) = (8 · 8)
28 8t8e64 12777 . . . . . . 7 (8 · 8) = 64
2927, 28eqtri 2753 . . . . . 6 (8↑2) = 64
3025, 29breqtri 5135 . . . . 5 (e↑2) ≤ 64
3130a1i 11 . . . 4 (𝜑 → (e↑2) ≤ 64)
329resqcli 14158 . . . . . 6 (e↑2) ∈ ℝ
3332a1i 11 . . . . 5 (𝜑 → (e↑2) ∈ ℝ)
346nnrei 12202 . . . . . 6 64 ∈ ℝ
3534a1i 11 . . . . 5 (𝜑64 ∈ ℝ)
368nnred 12208 . . . . 5 (𝜑𝑁 ∈ ℝ)
37 ltle 11269 . . . . . . 7 ((64 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (64 < 𝑁64 ≤ 𝑁))
3834, 36, 37sylancr 587 . . . . . 6 (𝜑 → (64 < 𝑁64 ≤ 𝑁))
391, 38mpd 15 . . . . 5 (𝜑64 ≤ 𝑁)
4033, 35, 36, 31, 39letrd 11338 . . . 4 (𝜑 → (e↑2) ≤ 𝑁)
412, 3, 7, 8, 31, 40bposlem7 27208 . . 3 (𝜑 → (64 < 𝑁 → (𝐹𝑁) < (𝐹64)))
421, 41mpd 15 . 2 (𝜑 → (𝐹𝑁) < (𝐹64))
432, 3bposlem8 27209 . . . . 5 ((𝐹64) ∈ ℝ ∧ (𝐹64) < (log‘2))
4443a1i 11 . . . 4 (𝜑 → ((𝐹64) ∈ ℝ ∧ (𝐹64) < (log‘2)))
4544simpld 494 . . 3 (𝜑 → (𝐹64) ∈ ℝ)
46 2fveq3 6866 . . . . . . . . 9 (𝑛 = 𝑁 → (𝐺‘(√‘𝑛)) = (𝐺‘(√‘𝑁)))
4746oveq2d 7406 . . . . . . . 8 (𝑛 = 𝑁 → ((√‘2) · (𝐺‘(√‘𝑛))) = ((√‘2) · (𝐺‘(√‘𝑁))))
48 fvoveq1 7413 . . . . . . . . 9 (𝑛 = 𝑁 → (𝐺‘(𝑛 / 2)) = (𝐺‘(𝑁 / 2)))
4948oveq2d 7406 . . . . . . . 8 (𝑛 = 𝑁 → ((9 / 4) · (𝐺‘(𝑛 / 2))) = ((9 / 4) · (𝐺‘(𝑁 / 2))))
5047, 49oveq12d 7408 . . . . . . 7 (𝑛 = 𝑁 → (((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) = (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))))
51 oveq2 7398 . . . . . . . . 9 (𝑛 = 𝑁 → (2 · 𝑛) = (2 · 𝑁))
5251fveq2d 6865 . . . . . . . 8 (𝑛 = 𝑁 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑁)))
5352oveq2d 7406 . . . . . . 7 (𝑛 = 𝑁 → ((log‘2) / (√‘(2 · 𝑛))) = ((log‘2) / (√‘(2 · 𝑁))))
5450, 53oveq12d 7408 . . . . . 6 (𝑛 = 𝑁 → ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
55 ovex 7423 . . . . . 6 ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))) ∈ V
5654, 2, 55fvmpt 6971 . . . . 5 (𝑁 ∈ ℕ → (𝐹𝑁) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
578, 56syl 17 . . . 4 (𝜑 → (𝐹𝑁) = ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))))
58 sqrt2re 16225 . . . . . . 7 (√‘2) ∈ ℝ
598nnrpd 13000 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ+)
6059rpsqrtcld 15385 . . . . . . . . 9 (𝜑 → (√‘𝑁) ∈ ℝ+)
61 fveq2 6861 . . . . . . . . . . 11 (𝑥 = (√‘𝑁) → (log‘𝑥) = (log‘(√‘𝑁)))
62 id 22 . . . . . . . . . . 11 (𝑥 = (√‘𝑁) → 𝑥 = (√‘𝑁))
6361, 62oveq12d 7408 . . . . . . . . . 10 (𝑥 = (√‘𝑁) → ((log‘𝑥) / 𝑥) = ((log‘(√‘𝑁)) / (√‘𝑁)))
64 ovex 7423 . . . . . . . . . 10 ((log‘(√‘𝑁)) / (√‘𝑁)) ∈ V
6563, 3, 64fvmpt 6971 . . . . . . . . 9 ((√‘𝑁) ∈ ℝ+ → (𝐺‘(√‘𝑁)) = ((log‘(√‘𝑁)) / (√‘𝑁)))
6660, 65syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(√‘𝑁)) = ((log‘(√‘𝑁)) / (√‘𝑁)))
6760relogcld 26539 . . . . . . . . 9 (𝜑 → (log‘(√‘𝑁)) ∈ ℝ)
6867, 60rerpdivcld 13033 . . . . . . . 8 (𝜑 → ((log‘(√‘𝑁)) / (√‘𝑁)) ∈ ℝ)
6966, 68eqeltrd 2829 . . . . . . 7 (𝜑 → (𝐺‘(√‘𝑁)) ∈ ℝ)
70 remulcl 11160 . . . . . . 7 (((√‘2) ∈ ℝ ∧ (𝐺‘(√‘𝑁)) ∈ ℝ) → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℝ)
7158, 69, 70sylancr 587 . . . . . 6 (𝜑 → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℝ)
72 9re 12292 . . . . . . . 8 9 ∈ ℝ
73 4re 12277 . . . . . . . 8 4 ∈ ℝ
74 4ne0 12301 . . . . . . . 8 4 ≠ 0
7572, 73, 74redivcli 11956 . . . . . . 7 (9 / 4) ∈ ℝ
7659rphalfcld 13014 . . . . . . . . 9 (𝜑 → (𝑁 / 2) ∈ ℝ+)
77 fveq2 6861 . . . . . . . . . . 11 (𝑥 = (𝑁 / 2) → (log‘𝑥) = (log‘(𝑁 / 2)))
78 id 22 . . . . . . . . . . 11 (𝑥 = (𝑁 / 2) → 𝑥 = (𝑁 / 2))
7977, 78oveq12d 7408 . . . . . . . . . 10 (𝑥 = (𝑁 / 2) → ((log‘𝑥) / 𝑥) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
80 ovex 7423 . . . . . . . . . 10 ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ V
8179, 3, 80fvmpt 6971 . . . . . . . . 9 ((𝑁 / 2) ∈ ℝ+ → (𝐺‘(𝑁 / 2)) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
8276, 81syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(𝑁 / 2)) = ((log‘(𝑁 / 2)) / (𝑁 / 2)))
8376relogcld 26539 . . . . . . . . 9 (𝜑 → (log‘(𝑁 / 2)) ∈ ℝ)
8483, 76rerpdivcld 13033 . . . . . . . 8 (𝜑 → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℝ)
8582, 84eqeltrd 2829 . . . . . . 7 (𝜑 → (𝐺‘(𝑁 / 2)) ∈ ℝ)
86 remulcl 11160 . . . . . . 7 (((9 / 4) ∈ ℝ ∧ (𝐺‘(𝑁 / 2)) ∈ ℝ) → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℝ)
8775, 85, 86sylancr 587 . . . . . 6 (𝜑 → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℝ)
8871, 87readdcld 11210 . . . . 5 (𝜑 → (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℝ)
89 2rp 12963 . . . . . . 7 2 ∈ ℝ+
90 relogcl 26491 . . . . . . 7 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
9189, 90ax-mp 5 . . . . . 6 (log‘2) ∈ ℝ
92 rpmulcl 12983 . . . . . . . 8 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 · 𝑁) ∈ ℝ+)
9389, 59, 92sylancr 587 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
9493rpsqrtcld 15385 . . . . . 6 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ+)
95 rerpdivcl 12990 . . . . . 6 (((log‘2) ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ+) → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℝ)
9691, 94, 95sylancr 587 . . . . 5 (𝜑 → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℝ)
9788, 96readdcld 11210 . . . 4 (𝜑 → ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁)))) ∈ ℝ)
9857, 97eqeltrd 2829 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ)
9991a1i 11 . . . 4 (𝜑 → (log‘2) ∈ ℝ)
10044simprd 495 . . . 4 (𝜑 → (𝐹64) < (log‘2))
101 nnrp 12970 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
1025, 101ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
103 relogcl 26491 . . . . . . . . . 10 (4 ∈ ℝ+ → (log‘4) ∈ ℝ)
104102, 103ax-mp 5 . . . . . . . . 9 (log‘4) ∈ ℝ
105 remulcl 11160 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (log‘4) ∈ ℝ) → (𝑁 · (log‘4)) ∈ ℝ)
10636, 104, 105sylancl 586 . . . . . . . 8 (𝜑 → (𝑁 · (log‘4)) ∈ ℝ)
10759relogcld 26539 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
108106, 107resubcld 11613 . . . . . . 7 (𝜑 → ((𝑁 · (log‘4)) − (log‘𝑁)) ∈ ℝ)
109 rpre 12967 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℝ+ → (2 · 𝑁) ∈ ℝ)
110 rpge0 12972 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ ℝ+ → 0 ≤ (2 · 𝑁))
111109, 110resqrtcld 15391 . . . . . . . . . . . 12 ((2 · 𝑁) ∈ ℝ+ → (√‘(2 · 𝑁)) ∈ ℝ)
11293, 111syl 17 . . . . . . . . . . 11 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
113 3nn 12272 . . . . . . . . . . 11 3 ∈ ℕ
114 nndivre 12234 . . . . . . . . . . 11 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℕ) → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
115112, 113, 114sylancl 586 . . . . . . . . . 10 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℝ)
116 2re 12267 . . . . . . . . . 10 2 ∈ ℝ
117 readdcl 11158 . . . . . . . . . 10 ((((√‘(2 · 𝑁)) / 3) ∈ ℝ ∧ 2 ∈ ℝ) → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
118115, 116, 117sylancl 586 . . . . . . . . 9 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℝ)
11993relogcld 26539 . . . . . . . . 9 (𝜑 → (log‘(2 · 𝑁)) ∈ ℝ)
120118, 119remulcld 11211 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℝ)
121 remulcl 11160 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (4 · 𝑁) ∈ ℝ)
12273, 36, 121sylancr 587 . . . . . . . . . . 11 (𝜑 → (4 · 𝑁) ∈ ℝ)
123 nndivre 12234 . . . . . . . . . . 11 (((4 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((4 · 𝑁) / 3) ∈ ℝ)
124122, 113, 123sylancl 586 . . . . . . . . . 10 (𝜑 → ((4 · 𝑁) / 3) ∈ ℝ)
125 5re 12280 . . . . . . . . . 10 5 ∈ ℝ
126 resubcl 11493 . . . . . . . . . 10 ((((4 · 𝑁) / 3) ∈ ℝ ∧ 5 ∈ ℝ) → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
127124, 125, 126sylancl 586 . . . . . . . . 9 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℝ)
128 remulcl 11160 . . . . . . . . 9 (((((4 · 𝑁) / 3) − 5) ∈ ℝ ∧ (log‘2) ∈ ℝ) → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℝ)
129127, 91, 128sylancl 586 . . . . . . . 8 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℝ)
130120, 129readdcld 11210 . . . . . . 7 (𝜑 → (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ∈ ℝ)
131 remulcl 11160 . . . . . . . . 9 ((((4 · 𝑁) / 3) ∈ ℝ ∧ (log‘2) ∈ ℝ) → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℝ)
132124, 91, 131sylancl 586 . . . . . . . 8 (𝜑 → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℝ)
133132, 107resubcld 11613 . . . . . . 7 (𝜑 → ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)) ∈ ℝ)
1348nnzd 12563 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
135 df-5 12259 . . . . . . . . . . . 12 5 = (4 + 1)
13673a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 ∈ ℝ)
137 6nn 12282 . . . . . . . . . . . . . . . 16 6 ∈ ℕ
138 4nn0 12468 . . . . . . . . . . . . . . . 16 4 ∈ ℕ0
139 4lt10 12792 . . . . . . . . . . . . . . . 16 4 < 10
140137, 138, 138, 139declti 12694 . . . . . . . . . . . . . . 15 4 < 64
141140a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 < 64)
142136, 35, 36, 141, 1lttrd 11342 . . . . . . . . . . . . 13 (𝜑 → 4 < 𝑁)
143 4z 12574 . . . . . . . . . . . . . 14 4 ∈ ℤ
144 zltp1le 12590 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (4 < 𝑁 ↔ (4 + 1) ≤ 𝑁))
145143, 134, 144sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (4 < 𝑁 ↔ (4 + 1) ≤ 𝑁))
146142, 145mpbid 232 . . . . . . . . . . . 12 (𝜑 → (4 + 1) ≤ 𝑁)
147135, 146eqbrtrid 5145 . . . . . . . . . . 11 (𝜑 → 5 ≤ 𝑁)
148 5nn 12279 . . . . . . . . . . . . 13 5 ∈ ℕ
149148nnzi 12564 . . . . . . . . . . . 12 5 ∈ ℤ
150149eluz1i 12808 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘5) ↔ (𝑁 ∈ ℤ ∧ 5 ≤ 𝑁))
151134, 147, 150sylanbrc 583 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘5))
152 bposlem9.5 . . . . . . . . . . 11 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
153 breq2 5114 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑁 < 𝑝𝑁 < 𝑞))
154 breq1 5113 . . . . . . . . . . . . 13 (𝑝 = 𝑞 → (𝑝 ≤ (2 · 𝑁) ↔ 𝑞 ≤ (2 · 𝑁)))
155153, 154anbi12d 632 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ((𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁))))
156155cbvrexvw 3217 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)) ↔ ∃𝑞 ∈ ℙ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁)))
157152, 156sylnib 328 . . . . . . . . . 10 (𝜑 → ¬ ∃𝑞 ∈ ℙ (𝑁 < 𝑞𝑞 ≤ (2 · 𝑁)))
158 eqid 2730 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
159 eqid 2730 . . . . . . . . . 10 (⌊‘((2 · 𝑁) / 3)) = (⌊‘((2 · 𝑁) / 3))
160 eqid 2730 . . . . . . . . . 10 (⌊‘(√‘(2 · 𝑁))) = (⌊‘(√‘(2 · 𝑁)))
161151, 157, 158, 159, 160bposlem6 27207 . . . . . . . . 9 (𝜑 → ((4↑𝑁) / 𝑁) < (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))))
162 reexplog 26511 . . . . . . . . . . . 12 ((4 ∈ ℝ+𝑁 ∈ ℤ) → (4↑𝑁) = (exp‘(𝑁 · (log‘4))))
163102, 134, 162sylancr 587 . . . . . . . . . . 11 (𝜑 → (4↑𝑁) = (exp‘(𝑁 · (log‘4))))
16459reeflogd 26540 . . . . . . . . . . . 12 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
165164eqcomd 2736 . . . . . . . . . . 11 (𝜑𝑁 = (exp‘(log‘𝑁)))
166163, 165oveq12d 7408 . . . . . . . . . 10 (𝜑 → ((4↑𝑁) / 𝑁) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
167106recnd 11209 . . . . . . . . . . 11 (𝜑 → (𝑁 · (log‘4)) ∈ ℂ)
168107recnd 11209 . . . . . . . . . . 11 (𝜑 → (log‘𝑁) ∈ ℂ)
169 efsub 16075 . . . . . . . . . . 11 (((𝑁 · (log‘4)) ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
170167, 168, 169syl2anc 584 . . . . . . . . . 10 (𝜑 → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) = ((exp‘(𝑁 · (log‘4))) / (exp‘(log‘𝑁))))
171166, 170eqtr4d 2768 . . . . . . . . 9 (𝜑 → ((4↑𝑁) / 𝑁) = (exp‘((𝑁 · (log‘4)) − (log‘𝑁))))
17293rpcnd 13004 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℂ)
17393rpne0d 13007 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ≠ 0)
174118recnd 11209 . . . . . . . . . . . 12 (𝜑 → (((√‘(2 · 𝑁)) / 3) + 2) ∈ ℂ)
175172, 173, 174cxpefd 26628 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) = (exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))))
176 2cn 12268 . . . . . . . . . . . 12 2 ∈ ℂ
177 2ne0 12297 . . . . . . . . . . . 12 2 ≠ 0
178127recnd 11209 . . . . . . . . . . . 12 (𝜑 → (((4 · 𝑁) / 3) − 5) ∈ ℂ)
179 cxpef 26581 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ (((4 · 𝑁) / 3) − 5) ∈ ℂ) → (2↑𝑐(((4 · 𝑁) / 3) − 5)) = (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2))))
180176, 177, 178, 179mp3an12i 1467 . . . . . . . . . . 11 (𝜑 → (2↑𝑐(((4 · 𝑁) / 3) − 5)) = (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2))))
181175, 180oveq12d 7408 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
182120recnd 11209 . . . . . . . . . . 11 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℂ)
183129recnd 11209 . . . . . . . . . . 11 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℂ)
184 efadd 16067 . . . . . . . . . . 11 ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) ∈ ℂ ∧ ((((4 · 𝑁) / 3) − 5) · (log‘2)) ∈ ℂ) → (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
185182, 183, 184syl2anc 584 . . . . . . . . . 10 (𝜑 → (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))) = ((exp‘((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁)))) · (exp‘((((4 · 𝑁) / 3) − 5) · (log‘2)))))
186181, 185eqtr4d 2768 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑𝑐(((√‘(2 · 𝑁)) / 3) + 2)) · (2↑𝑐(((4 · 𝑁) / 3) − 5))) = (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))))
187161, 171, 1863brtr3d 5141 . . . . . . . 8 (𝜑 → (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2)))))
188 eflt 16092 . . . . . . . . 9 ((((𝑁 · (log‘4)) − (log‘𝑁)) ∈ ℝ ∧ (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ∈ ℝ) → (((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ↔ (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))))
189108, 130, 188syl2anc 584 . . . . . . . 8 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) ↔ (exp‘((𝑁 · (log‘4)) − (log‘𝑁))) < (exp‘(((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))))
190187, 189mpbird 257 . . . . . . 7 (𝜑 → ((𝑁 · (log‘4)) − (log‘𝑁)) < (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))))
191108, 130, 133, 190ltsub1dd 11797 . . . . . 6 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) < ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
19236recnd 11209 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
193 mulcom 11161 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) = (𝑁 · 2))
194176, 192, 193sylancr 587 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = (𝑁 · 2))
195194oveq1d 7405 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · (log‘2)) = ((𝑁 · 2) · (log‘2)))
19691recni 11195 . . . . . . . . . . . 12 (log‘2) ∈ ℂ
197 mulass 11163 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ (log‘2) ∈ ℂ) → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
198176, 196, 197mp3an23 1455 . . . . . . . . . . 11 (𝑁 ∈ ℂ → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
199192, 198syl 17 . . . . . . . . . 10 (𝜑 → ((𝑁 · 2) · (log‘2)) = (𝑁 · (2 · (log‘2))))
2001962timesi 12326 . . . . . . . . . . . 12 (2 · (log‘2)) = ((log‘2) + (log‘2))
201 relogmul 26508 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (log‘(2 · 2)) = ((log‘2) + (log‘2)))
20289, 89, 201mp2an 692 . . . . . . . . . . . 12 (log‘(2 · 2)) = ((log‘2) + (log‘2))
203 2t2e4 12352 . . . . . . . . . . . . 13 (2 · 2) = 4
204203fveq2i 6864 . . . . . . . . . . . 12 (log‘(2 · 2)) = (log‘4)
205200, 202, 2043eqtr2i 2759 . . . . . . . . . . 11 (2 · (log‘2)) = (log‘4)
206205oveq2i 7401 . . . . . . . . . 10 (𝑁 · (2 · (log‘2))) = (𝑁 · (log‘4))
207199, 206eqtrdi 2781 . . . . . . . . 9 (𝜑 → ((𝑁 · 2) · (log‘2)) = (𝑁 · (log‘4)))
208195, 207eqtrd 2765 . . . . . . . 8 (𝜑 → ((2 · 𝑁) · (log‘2)) = (𝑁 · (log‘4)))
209208oveq1d 7405 . . . . . . 7 (𝜑 → (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))) = ((𝑁 · (log‘4)) − (((4 · 𝑁) / 3) · (log‘2))))
210124recnd 11209 . . . . . . . . . 10 (𝜑 → ((4 · 𝑁) / 3) ∈ ℂ)
211 3rp 12964 . . . . . . . . . . . 12 3 ∈ ℝ+
212 rpdivcl 12985 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ+ ∧ 3 ∈ ℝ+) → ((2 · 𝑁) / 3) ∈ ℝ+)
21393, 211, 212sylancl 586 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ+)
214213rpcnd 13004 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁) / 3) ∈ ℂ)
215 4p2e6 12341 . . . . . . . . . . . . . 14 (4 + 2) = 6
216215oveq1i 7400 . . . . . . . . . . . . 13 ((4 + 2) · 𝑁) = (6 · 𝑁)
217 4cn 12278 . . . . . . . . . . . . . 14 4 ∈ ℂ
218 adddir 11172 . . . . . . . . . . . . . 14 ((4 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((4 + 2) · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
219217, 176, 192, 218mp3an12i 1467 . . . . . . . . . . . . 13 (𝜑 → ((4 + 2) · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
220216, 219eqtr3id 2779 . . . . . . . . . . . 12 (𝜑 → (6 · 𝑁) = ((4 · 𝑁) + (2 · 𝑁)))
221220oveq1d 7405 . . . . . . . . . . 11 (𝜑 → ((6 · 𝑁) / 3) = (((4 · 𝑁) + (2 · 𝑁)) / 3))
222 6cn 12284 . . . . . . . . . . . . . 14 6 ∈ ℂ
223 3cn 12274 . . . . . . . . . . . . . . 15 3 ∈ ℂ
224 3ne0 12299 . . . . . . . . . . . . . . 15 3 ≠ 0
225223, 224pm3.2i 470 . . . . . . . . . . . . . 14 (3 ∈ ℂ ∧ 3 ≠ 0)
226 div23 11863 . . . . . . . . . . . . . 14 ((6 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
227222, 225, 226mp3an13 1454 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
228192, 227syl 17 . . . . . . . . . . . 12 (𝜑 → ((6 · 𝑁) / 3) = ((6 / 3) · 𝑁))
229 3t2e6 12354 . . . . . . . . . . . . . . 15 (3 · 2) = 6
230229oveq1i 7400 . . . . . . . . . . . . . 14 ((3 · 2) / 3) = (6 / 3)
231176, 223, 224divcan3i 11935 . . . . . . . . . . . . . 14 ((3 · 2) / 3) = 2
232230, 231eqtr3i 2755 . . . . . . . . . . . . 13 (6 / 3) = 2
233232oveq1i 7400 . . . . . . . . . . . 12 ((6 / 3) · 𝑁) = (2 · 𝑁)
234228, 233eqtrdi 2781 . . . . . . . . . . 11 (𝜑 → ((6 · 𝑁) / 3) = (2 · 𝑁))
235122recnd 11209 . . . . . . . . . . . 12 (𝜑 → (4 · 𝑁) ∈ ℂ)
236 remulcl 11160 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
237116, 36, 236sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑁) ∈ ℝ)
238237recnd 11209 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℂ)
239 divdir 11869 . . . . . . . . . . . . 13 (((4 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
240225, 239mp3an3 1452 . . . . . . . . . . . 12 (((4 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ) → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
241235, 238, 240syl2anc 584 . . . . . . . . . . 11 (𝜑 → (((4 · 𝑁) + (2 · 𝑁)) / 3) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
242221, 234, 2413eqtr3d 2773 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = (((4 · 𝑁) / 3) + ((2 · 𝑁) / 3)))
243210, 214, 242mvrladdd 11598 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) − ((4 · 𝑁) / 3)) = ((2 · 𝑁) / 3))
244243oveq1d 7405 . . . . . . . 8 (𝜑 → (((2 · 𝑁) − ((4 · 𝑁) / 3)) · (log‘2)) = (((2 · 𝑁) / 3) · (log‘2)))
24599recnd 11209 . . . . . . . . 9 (𝜑 → (log‘2) ∈ ℂ)
246238, 210, 245subdird 11642 . . . . . . . 8 (𝜑 → (((2 · 𝑁) − ((4 · 𝑁) / 3)) · (log‘2)) = (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))))
247244, 246eqtr3d 2767 . . . . . . 7 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) = (((2 · 𝑁) · (log‘2)) − (((4 · 𝑁) / 3) · (log‘2))))
248132recnd 11209 . . . . . . . 8 (𝜑 → (((4 · 𝑁) / 3) · (log‘2)) ∈ ℂ)
249167, 248, 168nnncan2d 11575 . . . . . . 7 (𝜑 → (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((𝑁 · (log‘4)) − (((4 · 𝑁) / 3) · (log‘2))))
250209, 247, 2493eqtr4d 2775 . . . . . 6 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) = (((𝑁 · (log‘4)) − (log‘𝑁)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
251115recnd 11209 . . . . . . . . . 10 (𝜑 → ((√‘(2 · 𝑁)) / 3) ∈ ℂ)
252176a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
253119recnd 11209 . . . . . . . . . 10 (𝜑 → (log‘(2 · 𝑁)) ∈ ℂ)
254251, 252, 253adddird 11206 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (2 · (log‘(2 · 𝑁)))))
255 relogmul 26508 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (log‘(2 · 𝑁)) = ((log‘2) + (log‘𝑁)))
25689, 59, 255sylancr 587 . . . . . . . . . . . 12 (𝜑 → (log‘(2 · 𝑁)) = ((log‘2) + (log‘𝑁)))
257256oveq2d 7406 . . . . . . . . . . 11 (𝜑 → (2 · (log‘(2 · 𝑁))) = (2 · ((log‘2) + (log‘𝑁))))
258252, 245, 168adddid 11205 . . . . . . . . . . 11 (𝜑 → (2 · ((log‘2) + (log‘𝑁))) = ((2 · (log‘2)) + (2 · (log‘𝑁))))
259257, 258eqtrd 2765 . . . . . . . . . 10 (𝜑 → (2 · (log‘(2 · 𝑁))) = ((2 · (log‘2)) + (2 · (log‘𝑁))))
260259oveq2d 7406 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (2 · (log‘(2 · 𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))))
261254, 260eqtrd 2765 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))))
262 5cn 12281 . . . . . . . . . . . 12 5 ∈ ℂ
263262a1i 11 . . . . . . . . . . 11 (𝜑 → 5 ∈ ℂ)
264210, 263, 245subdird 11642 . . . . . . . . . 10 (𝜑 → ((((4 · 𝑁) / 3) − 5) · (log‘2)) = ((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))))
265264oveq1d 7405 . . . . . . . . 9 (𝜑 → (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = (((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
266262, 196mulcli 11188 . . . . . . . . . . 11 (5 · (log‘2)) ∈ ℂ
267266a1i 11 . . . . . . . . . 10 (𝜑 → (5 · (log‘2)) ∈ ℂ)
268248, 267, 168nnncan1d 11574 . . . . . . . . 9 (𝜑 → (((((4 · 𝑁) / 3) · (log‘2)) − (5 · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((log‘𝑁) − (5 · (log‘2))))
269265, 268eqtrd 2765 . . . . . . . 8 (𝜑 → (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = ((log‘𝑁) − (5 · (log‘2))))
270261, 269oveq12d 7408 . . . . . . 7 (𝜑 → (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)))) = (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))))
271133recnd 11209 . . . . . . . 8 (𝜑 → ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)) ∈ ℂ)
272182, 183, 271addsubassd 11560 . . . . . . 7 (𝜑 → ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))) = (((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + (((((4 · 𝑁) / 3) − 5) · (log‘2)) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁)))))
273262, 223, 196subdiri 11635 . . . . . . . . . . . . 13 ((5 − 3) · (log‘2)) = ((5 · (log‘2)) − (3 · (log‘2)))
274 3p2e5 12339 . . . . . . . . . . . . . . . 16 (3 + 2) = 5
275274oveq1i 7400 . . . . . . . . . . . . . . 15 ((3 + 2) − 3) = (5 − 3)
276 pncan2 11435 . . . . . . . . . . . . . . . 16 ((3 ∈ ℂ ∧ 2 ∈ ℂ) → ((3 + 2) − 3) = 2)
277223, 176, 276mp2an 692 . . . . . . . . . . . . . . 15 ((3 + 2) − 3) = 2
278275, 277eqtr3i 2755 . . . . . . . . . . . . . 14 (5 − 3) = 2
279278oveq1i 7400 . . . . . . . . . . . . 13 ((5 − 3) · (log‘2)) = (2 · (log‘2))
280273, 279eqtr3i 2755 . . . . . . . . . . . 12 ((5 · (log‘2)) − (3 · (log‘2))) = (2 · (log‘2))
281280a1i 11 . . . . . . . . . . 11 (𝜑 → ((5 · (log‘2)) − (3 · (log‘2))) = (2 · (log‘2)))
282 mulcl 11159 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (2 · (log‘𝑁)) ∈ ℂ)
283176, 168, 282sylancr 587 . . . . . . . . . . . 12 (𝜑 → (2 · (log‘𝑁)) ∈ ℂ)
284 df-3 12257 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
285284oveq1i 7400 . . . . . . . . . . . . . . 15 (3 · (log‘𝑁)) = ((2 + 1) · (log‘𝑁))
286 1cnd 11176 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
287252, 286, 168adddird 11206 . . . . . . . . . . . . . . 15 (𝜑 → ((2 + 1) · (log‘𝑁)) = ((2 · (log‘𝑁)) + (1 · (log‘𝑁))))
288285, 287eqtrid 2777 . . . . . . . . . . . . . 14 (𝜑 → (3 · (log‘𝑁)) = ((2 · (log‘𝑁)) + (1 · (log‘𝑁))))
289168mullidd 11199 . . . . . . . . . . . . . . 15 (𝜑 → (1 · (log‘𝑁)) = (log‘𝑁))
290289oveq2d 7406 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (log‘𝑁)) + (1 · (log‘𝑁))) = ((2 · (log‘𝑁)) + (log‘𝑁)))
291288, 290eqtrd 2765 . . . . . . . . . . . . 13 (𝜑 → (3 · (log‘𝑁)) = ((2 · (log‘𝑁)) + (log‘𝑁)))
292291oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → ((3 · (log‘𝑁)) − (5 · (log‘2))) = (((2 · (log‘𝑁)) + (log‘𝑁)) − (5 · (log‘2))))
293283, 168, 267, 292assraddsubd 11599 . . . . . . . . . . 11 (𝜑 → ((3 · (log‘𝑁)) − (5 · (log‘2))) = ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2)))))
294281, 293oveq12d 7408 . . . . . . . . . 10 (𝜑 → (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))) = ((2 · (log‘2)) + ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2))))))
295 relogdiv 26509 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (log‘(𝑁 / 2)) = ((log‘𝑁) − (log‘2)))
29659, 89, 295sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (log‘(𝑁 / 2)) = ((log‘𝑁) − (log‘2)))
297296oveq2d 7406 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘(𝑁 / 2))) = (3 · ((log‘𝑁) − (log‘2))))
298 subdi 11618 . . . . . . . . . . . . . 14 ((3 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
299223, 196, 298mp3an13 1454 . . . . . . . . . . . . 13 ((log‘𝑁) ∈ ℂ → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
300168, 299syl 17 . . . . . . . . . . . 12 (𝜑 → (3 · ((log‘𝑁) − (log‘2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
301297, 300eqtrd 2765 . . . . . . . . . . 11 (𝜑 → (3 · (log‘(𝑁 / 2))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
302 div23 11863 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
303176, 225, 302mp3an13 1454 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
304192, 303syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) / 3) = ((2 / 3) · 𝑁))
305223, 176, 223, 176, 177, 177divmuldivi 11949 . . . . . . . . . . . . . . . . 17 ((3 / 2) · (3 / 2)) = ((3 · 3) / (2 · 2))
306 3t3e9 12355 . . . . . . . . . . . . . . . . . 18 (3 · 3) = 9
307306, 203oveq12i 7402 . . . . . . . . . . . . . . . . 17 ((3 · 3) / (2 · 2)) = (9 / 4)
308305, 307eqtr2i 2754 . . . . . . . . . . . . . . . 16 (9 / 4) = ((3 / 2) · (3 / 2))
309308a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (9 / 4) = ((3 / 2) · (3 / 2)))
310304, 309oveq12d 7408 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) / 3) · (9 / 4)) = (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))))
311176, 223, 224divcli 11931 . . . . . . . . . . . . . . 15 (2 / 3) ∈ ℂ
312223, 176, 177divcli 11931 . . . . . . . . . . . . . . . 16 (3 / 2) ∈ ℂ
313 mul4 11349 . . . . . . . . . . . . . . . 16 ((((2 / 3) ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ ((3 / 2) ∈ ℂ ∧ (3 / 2) ∈ ℂ)) → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
314312, 312, 313mpanr12 705 . . . . . . . . . . . . . . 15 (((2 / 3) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
315311, 192, 314sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (((2 / 3) · 𝑁) · ((3 / 2) · (3 / 2))) = (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))))
316 divcan6 11896 . . . . . . . . . . . . . . . . . 18 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((2 / 3) · (3 / 2)) = 1)
317176, 177, 223, 224, 316mp4an 693 . . . . . . . . . . . . . . . . 17 ((2 / 3) · (3 / 2)) = 1
318317oveq1i 7400 . . . . . . . . . . . . . . . 16 (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (1 · (𝑁 · (3 / 2)))
319 mulcl 11159 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ (3 / 2) ∈ ℂ) → (𝑁 · (3 / 2)) ∈ ℂ)
320192, 312, 319sylancl 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 · (3 / 2)) ∈ ℂ)
321320mullidd 11199 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · (𝑁 · (3 / 2))) = (𝑁 · (3 / 2)))
322318, 321eqtrid 2777 . . . . . . . . . . . . . . 15 (𝜑 → (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (𝑁 · (3 / 2)))
323 2cnne0 12398 . . . . . . . . . . . . . . . . 17 (2 ∈ ℂ ∧ 2 ≠ 0)
324 div12 11866 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
325223, 323, 324mp3an23 1455 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
326192, 325syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 · (3 / 2)) = (3 · (𝑁 / 2)))
327322, 326eqtrd 2765 . . . . . . . . . . . . . 14 (𝜑 → (((2 / 3) · (3 / 2)) · (𝑁 · (3 / 2))) = (3 · (𝑁 / 2)))
328310, 315, 3273eqtrd 2769 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) · (9 / 4)) = (3 · (𝑁 / 2)))
329328, 82oveq12d 7408 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · (9 / 4)) · (𝐺‘(𝑁 / 2))) = ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))))
33075recni 11195 . . . . . . . . . . . . . 14 (9 / 4) ∈ ℂ
331330a1i 11 . . . . . . . . . . . . 13 (𝜑 → (9 / 4) ∈ ℂ)
33285recnd 11209 . . . . . . . . . . . . 13 (𝜑 → (𝐺‘(𝑁 / 2)) ∈ ℂ)
333214, 331, 332mulassd 11204 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · (9 / 4)) · (𝐺‘(𝑁 / 2))) = (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))
334223a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 3 ∈ ℂ)
33576rpcnd 13004 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 / 2) ∈ ℂ)
33683recnd 11209 . . . . . . . . . . . . . . 15 (𝜑 → (log‘(𝑁 / 2)) ∈ ℂ)
33776rpne0d 13007 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 / 2) ≠ 0)
338336, 335, 337divcld 11965 . . . . . . . . . . . . . 14 (𝜑 → ((log‘(𝑁 / 2)) / (𝑁 / 2)) ∈ ℂ)
339334, 335, 338mulassd 11204 . . . . . . . . . . . . 13 (𝜑 → ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (3 · ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2)))))
340336, 335, 337divcan2d 11967 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (log‘(𝑁 / 2)))
341340oveq2d 7406 . . . . . . . . . . . . 13 (𝜑 → (3 · ((𝑁 / 2) · ((log‘(𝑁 / 2)) / (𝑁 / 2)))) = (3 · (log‘(𝑁 / 2))))
342339, 341eqtrd 2765 . . . . . . . . . . . 12 (𝜑 → ((3 · (𝑁 / 2)) · ((log‘(𝑁 / 2)) / (𝑁 / 2))) = (3 · (log‘(𝑁 / 2))))
343329, 333, 3423eqtr3d 2773 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (3 · (log‘(𝑁 / 2))))
344223, 196mulcli 11188 . . . . . . . . . . . . 13 (3 · (log‘2)) ∈ ℂ
345344a1i 11 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘2)) ∈ ℂ)
346 mulcl 11159 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ (log‘𝑁) ∈ ℂ) → (3 · (log‘𝑁)) ∈ ℂ)
347223, 168, 346sylancr 587 . . . . . . . . . . . 12 (𝜑 → (3 · (log‘𝑁)) ∈ ℂ)
348267, 345, 347npncan3d 11576 . . . . . . . . . . 11 (𝜑 → (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))) = ((3 · (log‘𝑁)) − (3 · (log‘2))))
349301, 343, 3483eqtr4d 2775 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (((5 · (log‘2)) − (3 · (log‘2))) + ((3 · (log‘𝑁)) − (5 · (log‘2)))))
350116, 91remulcli 11197 . . . . . . . . . . . . 13 (2 · (log‘2)) ∈ ℝ
351350recni 11195 . . . . . . . . . . . 12 (2 · (log‘2)) ∈ ℂ
352351a1i 11 . . . . . . . . . . 11 (𝜑 → (2 · (log‘2)) ∈ ℂ)
353 subcl 11427 . . . . . . . . . . . 12 (((log‘𝑁) ∈ ℂ ∧ (5 · (log‘2)) ∈ ℂ) → ((log‘𝑁) − (5 · (log‘2))) ∈ ℂ)
354168, 266, 353sylancl 586 . . . . . . . . . . 11 (𝜑 → ((log‘𝑁) − (5 · (log‘2))) ∈ ℂ)
355352, 283, 354addassd 11203 . . . . . . . . . 10 (𝜑 → (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2)))) = ((2 · (log‘2)) + ((2 · (log‘𝑁)) + ((log‘𝑁) − (5 · (log‘2))))))
356294, 349, 3553eqtr4d 2775 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) = (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2)))))
357356oveq2d 7406 . . . . . . . 8 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2))))))
358 mulcl 11159 . . . . . . . . . . 11 ((((√‘(2 · 𝑁)) / 3) ∈ ℂ ∧ (log‘2) ∈ ℂ) → (((√‘(2 · 𝑁)) / 3) · (log‘2)) ∈ ℂ)
359251, 196, 358sylancl 586 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘2)) ∈ ℂ)
360251, 168mulcld 11201 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) ∈ ℂ)
36187recnd 11209 . . . . . . . . . . 11 (𝜑 → ((9 / 4) · (𝐺‘(𝑁 / 2))) ∈ ℂ)
362214, 361mulcld 11201 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℂ)
363359, 360, 362addassd 11203 . . . . . . . . 9 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
364256oveq2d 7406 . . . . . . . . . . 11 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) = (((√‘(2 · 𝑁)) / 3) · ((log‘2) + (log‘𝑁))))
365251, 245, 168adddid 11205 . . . . . . . . . . 11 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((log‘2) + (log‘𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))))
366364, 365eqtrd 2765 . . . . . . . . . 10 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))))
367366oveq1d 7405 . . . . . . . . 9 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = (((((√‘(2 · 𝑁)) / 3) · (log‘2)) + (((√‘(2 · 𝑁)) / 3) · (log‘𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
36857oveq2d 7406 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = (((2 · 𝑁) / 3) · ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁))))))
36988recnd 11209 . . . . . . . . . . . 12 (𝜑 → (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) ∈ ℂ)
37096recnd 11209 . . . . . . . . . . . 12 (𝜑 → ((log‘2) / (√‘(2 · 𝑁))) ∈ ℂ)
371214, 369, 370adddid 11205 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2)))) + ((log‘2) / (√‘(2 · 𝑁))))) = ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))))
372368, 371eqtrd 2765 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))))
37371recnd 11209 . . . . . . . . . . . . 13 (𝜑 → ((√‘2) · (𝐺‘(√‘𝑁))) ∈ ℂ)
374214, 373, 361adddid 11205 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
37593rpge0d 13006 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (2 · 𝑁))
376 remsqsqrt 15229 . . . . . . . . . . . . . . . . . 18 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
377237, 375, 376syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
378377oveq1d 7405 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) / 3) = ((2 · 𝑁) / 3))
379112recnd 11209 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(2 · 𝑁)) ∈ ℂ)
380224a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ≠ 0)
381379, 379, 334, 380div23d 12002 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) / 3) = (((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))))
382378, 381eqtr3d 2767 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝑁) / 3) = (((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))))
383382oveq1d 7405 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((√‘2) · (𝐺‘(√‘𝑁)))))
384251, 379, 373mulassd 11204 . . . . . . . . . . . . . 14 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁))))))
385 0le2 12295 . . . . . . . . . . . . . . . . . . 19 0 ≤ 2
386116, 385pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (2 ∈ ℝ ∧ 0 ≤ 2)
38759rprege0d 13009 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
388 sqrtmul 15232 . . . . . . . . . . . . . . . . . 18 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) → (√‘(2 · 𝑁)) = ((√‘2) · (√‘𝑁)))
389386, 387, 388sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(2 · 𝑁)) = ((√‘2) · (√‘𝑁)))
390389oveq1d 7405 . . . . . . . . . . . . . . . 16 (𝜑 → ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘2) · (√‘𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))))
39158recni 11195 . . . . . . . . . . . . . . . . . 18 (√‘2) ∈ ℂ
392391a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘2) ∈ ℂ)
39360rpcnd 13004 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘𝑁) ∈ ℂ)
39469recnd 11209 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺‘(√‘𝑁)) ∈ ℂ)
395392, 393, 392, 394mul4d 11393 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘2) · (√‘𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))))
396 remsqsqrt 15229 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2)
397116, 385, 396mp2an 692 . . . . . . . . . . . . . . . . . . 19 ((√‘2) · (√‘2)) = 2
398397a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((√‘2) · (√‘2)) = 2)
39966oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · (𝐺‘(√‘𝑁))) = ((√‘𝑁) · ((log‘(√‘𝑁)) / (√‘𝑁))))
40067recnd 11209 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (log‘(√‘𝑁)) ∈ ℂ)
40160rpne0d 13007 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (√‘𝑁) ≠ 0)
402400, 393, 401divcan2d 11967 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · ((log‘(√‘𝑁)) / (√‘𝑁))) = (log‘(√‘𝑁)))
403399, 402eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((√‘𝑁) · (𝐺‘(√‘𝑁))) = (log‘(√‘𝑁)))
404398, 403oveq12d 7408 . . . . . . . . . . . . . . . . 17 (𝜑 → (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))) = (2 · (log‘(√‘𝑁))))
4054002timesd 12432 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (log‘(√‘𝑁))) = ((log‘(√‘𝑁)) + (log‘(√‘𝑁))))
40660, 60relogmuld 26541 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((√‘𝑁) · (√‘𝑁))) = ((log‘(√‘𝑁)) + (log‘(√‘𝑁))))
407 remsqsqrt 15229 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → ((√‘𝑁) · (√‘𝑁)) = 𝑁)
408387, 407syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((√‘𝑁) · (√‘𝑁)) = 𝑁)
409408fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((√‘𝑁) · (√‘𝑁))) = (log‘𝑁))
410406, 409eqtr3d 2767 . . . . . . . . . . . . . . . . 17 (𝜑 → ((log‘(√‘𝑁)) + (log‘(√‘𝑁))) = (log‘𝑁))
411404, 405, 4103eqtrd 2769 . . . . . . . . . . . . . . . 16 (𝜑 → (((√‘2) · (√‘2)) · ((√‘𝑁) · (𝐺‘(√‘𝑁)))) = (log‘𝑁))
412390, 395, 4113eqtrd 2769 . . . . . . . . . . . . . . 15 (𝜑 → ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (log‘𝑁))
413412oveq2d 7406 . . . . . . . . . . . . . 14 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((√‘2) · (𝐺‘(√‘𝑁))))) = (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)))
414383, 384, 4133eqtrd 2769 . . . . . . . . . . . . 13 (𝜑 → (((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) = (((√‘(2 · 𝑁)) / 3) · (log‘𝑁)))
415414oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → ((((2 · 𝑁) / 3) · ((√‘2) · (𝐺‘(√‘𝑁)))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
416374, 415eqtrd 2765 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) = ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
417382oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁)))) = ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((log‘2) / (√‘(2 · 𝑁)))))
418251, 379, 370mulassd 11204 . . . . . . . . . . . 12 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (√‘(2 · 𝑁))) · ((log‘2) / (√‘(2 · 𝑁)))) = (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁))))))
41994rpne0d 13007 . . . . . . . . . . . . . 14 (𝜑 → (√‘(2 · 𝑁)) ≠ 0)
420245, 379, 419divcan2d 11967 . . . . . . . . . . . . 13 (𝜑 → ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁)))) = (log‘2))
421420oveq2d 7406 . . . . . . . . . . . 12 (𝜑 → (((√‘(2 · 𝑁)) / 3) · ((√‘(2 · 𝑁)) · ((log‘2) / (√‘(2 · 𝑁))))) = (((√‘(2 · 𝑁)) / 3) · (log‘2)))
422417, 418, 4213eqtrd 2769 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁)))) = (((√‘(2 · 𝑁)) / 3) · (log‘2)))
423416, 422oveq12d 7408 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁) / 3) · (((√‘2) · (𝐺‘(√‘𝑁))) + ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((2 · 𝑁) / 3) · ((log‘2) / (√‘(2 · 𝑁))))) = (((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((√‘(2 · 𝑁)) / 3) · (log‘2))))
424360, 362addcld 11200 . . . . . . . . . . 11 (𝜑 → ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) ∈ ℂ)
425424, 359addcomd 11383 . . . . . . . . . 10 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))) + (((√‘(2 · 𝑁)) / 3) · (log‘2))) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
426372, 423, 4253eqtrd 2769 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((√‘(2 · 𝑁)) / 3) · (log‘2)) + ((((√‘(2 · 𝑁)) / 3) · (log‘𝑁)) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2)))))))
427363, 367, 4263eqtr4rd 2776 . . . . . . . 8 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · 𝑁) / 3) · ((9 / 4) · (𝐺‘(𝑁 / 2))))))
428251, 253mulcld 11201 . . . . . . . . 9 (𝜑 → (((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) ∈ ℂ)
429 addcl 11157 . . . . . . . . . 10 (((2 · (log‘2)) ∈ ℂ ∧ (2 · (log‘𝑁)) ∈ ℂ) → ((2 · (log‘2)) + (2 · (log‘𝑁))) ∈ ℂ)
430351, 283, 429sylancr 587 . . . . . . . . 9 (𝜑 → ((2 · (log‘2)) + (2 · (log‘𝑁))) ∈ ℂ)
431428, 430, 354addassd 11203 . . . . . . . 8 (𝜑 → (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))) = ((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + (((2 · (log‘2)) + (2 · (log‘𝑁))) + ((log‘𝑁) − (5 · (log‘2))))))
432357, 427, 4313eqtr4d 2775 . . . . . . 7 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = (((((√‘(2 · 𝑁)) / 3) · (log‘(2 · 𝑁))) + ((2 · (log‘2)) + (2 · (log‘𝑁)))) + ((log‘𝑁) − (5 · (log‘2)))))
433270, 272, 4323eqtr4rd 2776 . . . . . 6 (𝜑 → (((2 · 𝑁) / 3) · (𝐹𝑁)) = ((((((√‘(2 · 𝑁)) / 3) + 2) · (log‘(2 · 𝑁))) + ((((4 · 𝑁) / 3) − 5) · (log‘2))) − ((((4 · 𝑁) / 3) · (log‘2)) − (log‘𝑁))))
434191, 250, 4333brtr4d 5142 . . . . 5 (𝜑 → (((2 · 𝑁) / 3) · (log‘2)) < (((2 · 𝑁) / 3) · (𝐹𝑁)))
43599, 98, 213ltmul2d 13044 . . . . 5 (𝜑 → ((log‘2) < (𝐹𝑁) ↔ (((2 · 𝑁) / 3) · (log‘2)) < (((2 · 𝑁) / 3) · (𝐹𝑁))))
436434, 435mpbird 257 . . . 4 (𝜑 → (log‘2) < (𝐹𝑁))
43745, 99, 98, 100, 436lttrd 11342 . . 3 (𝜑 → (𝐹64) < (𝐹𝑁))
43845, 98, 437ltnsymd 11330 . 2 (𝜑 → ¬ (𝐹𝑁) < (𝐹64))
43942, 438pm2.21dd 195 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  ifcif 4491   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  4c4 12250  5c5 12251  6c6 12252  8c8 12254  9c9 12255  cz 12536  cdc 12656  cuz 12800  +crp 12958  cfl 13759  cexp 14033  Ccbc 14274  csqrt 15206  expce 16034  eceu 16035  cprime 16648   pCnt cpc 16814  logclog 26470  𝑐ccxp 26471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-e 16041  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473  df-cht 27014  df-ppi 27017
This theorem is referenced by:  bpos  27211
  Copyright terms: Public domain W3C validator