MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniwf Structured version   Visualization version   GIF version

Theorem uniwf 9232
Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
uniwf (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))

Proof of Theorem uniwf
StepHypRef Expression
1 r1tr 9189 . . . . . . . 8 Tr (𝑅1‘suc (rank‘𝐴))
2 rankidb 9213 . . . . . . . 8 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
3 trss 5145 . . . . . . . 8 (Tr (𝑅1‘suc (rank‘𝐴)) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))))
41, 2, 3mpsyl 68 . . . . . . 7 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
5 rankdmr1 9214 . . . . . . . 8 (rank‘𝐴) ∈ dom 𝑅1
6 r1sucg 9182 . . . . . . . 8 ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
75, 6ax-mp 5 . . . . . . 7 (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))
84, 7sseqtrdi 3965 . . . . . 6 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)))
9 sspwuni 4985 . . . . . 6 (𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
108, 9sylib 221 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
11 fvex 6658 . . . . . 6 (𝑅1‘(rank‘𝐴)) ∈ V
1211elpw2 5212 . . . . 5 ( 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
1310, 12sylibr 237 . . . 4 (𝐴 (𝑅1 “ On) → 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)))
1413, 7eleqtrrdi 2901 . . 3 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
15 r1elwf 9209 . . 3 ( 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 (𝑅1 “ On))
1614, 15syl 17 . 2 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
17 pwwf 9220 . . 3 ( 𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
18 pwuni 4837 . . . 4 𝐴 ⊆ 𝒫 𝐴
19 sswf 9221 . . . 4 ((𝒫 𝐴 (𝑅1 “ On) ∧ 𝐴 ⊆ 𝒫 𝐴) → 𝐴 (𝑅1 “ On))
2018, 19mpan2 690 . . 3 (𝒫 𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2117, 20sylbi 220 . 2 ( 𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2216, 21impbii 212 1 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1538  wcel 2111  wss 3881  𝒫 cpw 4497   cuni 4800  Tr wtr 5136  dom cdm 5519  cima 5522  Oncon0 6159  suc csuc 6161  cfv 6324  𝑅1cr1 9175  rankcrnk 9176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-r1 9177  df-rank 9178
This theorem is referenced by:  rankuni2b  9266  r1limwun  10147  wfgru  10227
  Copyright terms: Public domain W3C validator