Step | Hyp | Ref
| Expression |
1 | | r1tr 9773 |
. . . . . . . 8
β’ Tr
(π
1βsuc (rankβπ΄)) |
2 | | rankidb 9797 |
. . . . . . . 8
β’ (π΄ β βͺ (π
1 β On) β π΄ β
(π
1βsuc (rankβπ΄))) |
3 | | trss 5276 |
. . . . . . . 8
β’ (Tr
(π
1βsuc (rankβπ΄)) β (π΄ β (π
1βsuc
(rankβπ΄)) β
π΄ β
(π
1βsuc (rankβπ΄)))) |
4 | 1, 2, 3 | mpsyl 68 |
. . . . . . 7
β’ (π΄ β βͺ (π
1 β On) β π΄ β
(π
1βsuc (rankβπ΄))) |
5 | | rankdmr1 9798 |
. . . . . . . 8
β’
(rankβπ΄)
β dom π
1 |
6 | | r1sucg 9766 |
. . . . . . . 8
β’
((rankβπ΄)
β dom π
1 β (π
1βsuc
(rankβπ΄)) = π«
(π
1β(rankβπ΄))) |
7 | 5, 6 | ax-mp 5 |
. . . . . . 7
β’
(π
1βsuc (rankβπ΄)) = π«
(π
1β(rankβπ΄)) |
8 | 4, 7 | sseqtrdi 4032 |
. . . . . 6
β’ (π΄ β βͺ (π
1 β On) β π΄ β π«
(π
1β(rankβπ΄))) |
9 | | sspwuni 5103 |
. . . . . 6
β’ (π΄ β π«
(π
1β(rankβπ΄)) β βͺ π΄ β
(π
1β(rankβπ΄))) |
10 | 8, 9 | sylib 217 |
. . . . 5
β’ (π΄ β βͺ (π
1 β On) β βͺ π΄
β (π
1β(rankβπ΄))) |
11 | | fvex 6904 |
. . . . . 6
β’
(π
1β(rankβπ΄)) β V |
12 | 11 | elpw2 5345 |
. . . . 5
β’ (βͺ π΄
β π« (π
1β(rankβπ΄)) β βͺ π΄ β
(π
1β(rankβπ΄))) |
13 | 10, 12 | sylibr 233 |
. . . 4
β’ (π΄ β βͺ (π
1 β On) β βͺ π΄
β π« (π
1β(rankβπ΄))) |
14 | 13, 7 | eleqtrrdi 2844 |
. . 3
β’ (π΄ β βͺ (π
1 β On) β βͺ π΄
β (π
1βsuc (rankβπ΄))) |
15 | | r1elwf 9793 |
. . 3
β’ (βͺ π΄
β (π
1βsuc (rankβπ΄)) β βͺ π΄ β βͺ (π
1 β On)) |
16 | 14, 15 | syl 17 |
. 2
β’ (π΄ β βͺ (π
1 β On) β βͺ π΄
β βͺ (π
1 β
On)) |
17 | | pwwf 9804 |
. . 3
β’ (βͺ π΄
β βͺ (π
1 β On) β
π« βͺ π΄ β βͺ
(π
1 β On)) |
18 | | pwuni 4949 |
. . . 4
β’ π΄ β π« βͺ π΄ |
19 | | sswf 9805 |
. . . 4
β’
((π« βͺ π΄ β βͺ
(π
1 β On) β§ π΄ β π« βͺ π΄)
β π΄ β βͺ (π
1 β On)) |
20 | 18, 19 | mpan2 689 |
. . 3
β’
(π« βͺ π΄ β βͺ
(π
1 β On) β π΄ β βͺ
(π
1 β On)) |
21 | 17, 20 | sylbi 216 |
. 2
β’ (βͺ π΄
β βͺ (π
1 β On) β
π΄ β βͺ (π
1 β On)) |
22 | 16, 21 | impbii 208 |
1
β’ (π΄ β βͺ (π
1 β On) β βͺ π΄
β βͺ (π
1 β
On)) |