MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniwf Structured version   Visualization version   GIF version

Theorem uniwf 9715
Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
uniwf (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))

Proof of Theorem uniwf
StepHypRef Expression
1 r1tr 9672 . . . . . . . 8 Tr (𝑅1‘suc (rank‘𝐴))
2 rankidb 9696 . . . . . . . 8 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
3 trss 5209 . . . . . . . 8 (Tr (𝑅1‘suc (rank‘𝐴)) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))))
41, 2, 3mpsyl 68 . . . . . . 7 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
5 rankdmr1 9697 . . . . . . . 8 (rank‘𝐴) ∈ dom 𝑅1
6 r1sucg 9665 . . . . . . . 8 ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
75, 6ax-mp 5 . . . . . . 7 (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))
84, 7sseqtrdi 3976 . . . . . 6 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)))
9 sspwuni 5049 . . . . . 6 (𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
108, 9sylib 218 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
11 fvex 6835 . . . . . 6 (𝑅1‘(rank‘𝐴)) ∈ V
1211elpw2 5273 . . . . 5 ( 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
1310, 12sylibr 234 . . . 4 (𝐴 (𝑅1 “ On) → 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)))
1413, 7eleqtrrdi 2839 . . 3 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
15 r1elwf 9692 . . 3 ( 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 (𝑅1 “ On))
1614, 15syl 17 . 2 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
17 pwwf 9703 . . 3 ( 𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
18 pwuni 4895 . . . 4 𝐴 ⊆ 𝒫 𝐴
19 sswf 9704 . . . 4 ((𝒫 𝐴 (𝑅1 “ On) ∧ 𝐴 ⊆ 𝒫 𝐴) → 𝐴 (𝑅1 “ On))
2018, 19mpan2 691 . . 3 (𝒫 𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2117, 20sylbi 217 . 2 ( 𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2216, 21impbii 209 1 (𝐴 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wss 3903  𝒫 cpw 4551   cuni 4858  Tr wtr 5199  dom cdm 5619  cima 5622  Oncon0 6307  suc csuc 6309  cfv 6482  𝑅1cr1 9658  rankcrnk 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-rank 9661
This theorem is referenced by:  rankuni2b  9749  r1limwun  10630  wfgru  10710  dmwf  44939  rnwf  44940  wfaxun  44973  wfac8prim  44976
  Copyright terms: Public domain W3C validator