Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniwf | Structured version Visualization version GIF version |
Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
uniwf | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1tr 9534 | . . . . . . . 8 ⊢ Tr (𝑅1‘suc (rank‘𝐴)) | |
2 | rankidb 9558 | . . . . . . . 8 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | |
3 | trss 5200 | . . . . . . . 8 ⊢ (Tr (𝑅1‘suc (rank‘𝐴)) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))) | |
4 | 1, 2, 3 | mpsyl 68 | . . . . . . 7 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))) |
5 | rankdmr1 9559 | . . . . . . . 8 ⊢ (rank‘𝐴) ∈ dom 𝑅1 | |
6 | r1sucg 9527 | . . . . . . . 8 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)) |
8 | 4, 7 | sseqtrdi 3971 | . . . . . 6 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴))) |
9 | sspwuni 5029 | . . . . . 6 ⊢ (𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ ∪ 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
10 | 8, 9 | sylib 217 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) |
11 | fvex 6787 | . . . . . 6 ⊢ (𝑅1‘(rank‘𝐴)) ∈ V | |
12 | 11 | elpw2 5269 | . . . . 5 ⊢ (∪ 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ ∪ 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) |
13 | 10, 12 | sylibr 233 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴))) |
14 | 13, 7 | eleqtrrdi 2850 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
15 | r1elwf 9554 | . . 3 ⊢ (∪ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) |
17 | pwwf 9565 | . . 3 ⊢ (∪ 𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) | |
18 | pwuni 4878 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
19 | sswf 9566 | . . . 4 ⊢ ((𝒫 ∪ 𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) → 𝐴 ∈ ∪ (𝑅1 “ On)) | |
20 | 18, 19 | mpan2 688 | . . 3 ⊢ (𝒫 ∪ 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
21 | 17, 20 | sylbi 216 | . 2 ⊢ (∪ 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
22 | 16, 21 | impbii 208 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 Tr wtr 5191 dom cdm 5589 “ cima 5592 Oncon0 6266 suc csuc 6268 ‘cfv 6433 𝑅1cr1 9520 rankcrnk 9521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-r1 9522 df-rank 9523 |
This theorem is referenced by: rankuni2b 9611 r1limwun 10492 wfgru 10572 |
Copyright terms: Public domain | W3C validator |