| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniwf | Structured version Visualization version GIF version | ||
| Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| uniwf | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1tr 9672 | . . . . . . . 8 ⊢ Tr (𝑅1‘suc (rank‘𝐴)) | |
| 2 | rankidb 9696 | . . . . . . . 8 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | |
| 3 | trss 5209 | . . . . . . . 8 ⊢ (Tr (𝑅1‘suc (rank‘𝐴)) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))) | |
| 4 | 1, 2, 3 | mpsyl 68 | . . . . . . 7 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))) |
| 5 | rankdmr1 9697 | . . . . . . . 8 ⊢ (rank‘𝐴) ∈ dom 𝑅1 | |
| 6 | r1sucg 9665 | . . . . . . . 8 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)) |
| 8 | 4, 7 | sseqtrdi 3976 | . . . . . 6 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴))) |
| 9 | sspwuni 5049 | . . . . . 6 ⊢ (𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ ∪ 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
| 10 | 8, 9 | sylib 218 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) |
| 11 | fvex 6835 | . . . . . 6 ⊢ (𝑅1‘(rank‘𝐴)) ∈ V | |
| 12 | 11 | elpw2 5273 | . . . . 5 ⊢ (∪ 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ ∪ 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) |
| 13 | 10, 12 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴))) |
| 14 | 13, 7 | eleqtrrdi 2839 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
| 15 | r1elwf 9692 | . . 3 ⊢ (∪ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 17 | pwwf 9703 | . . 3 ⊢ (∪ 𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) | |
| 18 | pwuni 4895 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 19 | sswf 9704 | . . . 4 ⊢ ((𝒫 ∪ 𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) → 𝐴 ∈ ∪ (𝑅1 “ On)) | |
| 20 | 18, 19 | mpan2 691 | . . 3 ⊢ (𝒫 ∪ 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 21 | 17, 20 | sylbi 217 | . 2 ⊢ (∪ 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 22 | 16, 21 | impbii 209 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 𝒫 cpw 4551 ∪ cuni 4858 Tr wtr 5199 dom cdm 5619 “ cima 5622 Oncon0 6307 suc csuc 6309 ‘cfv 6482 𝑅1cr1 9658 rankcrnk 9659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-r1 9660 df-rank 9661 |
| This theorem is referenced by: rankuni2b 9749 r1limwun 10630 wfgru 10710 dmwf 44939 rnwf 44940 wfaxun 44973 wfac8prim 44976 |
| Copyright terms: Public domain | W3C validator |