| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniwf | Structured version Visualization version GIF version | ||
| Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| uniwf | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1tr 9729 | . . . . . . . 8 ⊢ Tr (𝑅1‘suc (rank‘𝐴)) | |
| 2 | rankidb 9753 | . . . . . . . 8 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | |
| 3 | trss 5225 | . . . . . . . 8 ⊢ (Tr (𝑅1‘suc (rank‘𝐴)) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))) | |
| 4 | 1, 2, 3 | mpsyl 68 | . . . . . . 7 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))) |
| 5 | rankdmr1 9754 | . . . . . . . 8 ⊢ (rank‘𝐴) ∈ dom 𝑅1 | |
| 6 | r1sucg 9722 | . . . . . . . 8 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)) |
| 8 | 4, 7 | sseqtrdi 3987 | . . . . . 6 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴))) |
| 9 | sspwuni 5064 | . . . . . 6 ⊢ (𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ ∪ 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
| 10 | 8, 9 | sylib 218 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) |
| 11 | fvex 6871 | . . . . . 6 ⊢ (𝑅1‘(rank‘𝐴)) ∈ V | |
| 12 | 11 | elpw2 5289 | . . . . 5 ⊢ (∪ 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ ∪ 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) |
| 13 | 10, 12 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴))) |
| 14 | 13, 7 | eleqtrrdi 2839 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
| 15 | r1elwf 9749 | . . 3 ⊢ (∪ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 17 | pwwf 9760 | . . 3 ⊢ (∪ 𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) | |
| 18 | pwuni 4909 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 19 | sswf 9761 | . . . 4 ⊢ ((𝒫 ∪ 𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) → 𝐴 ∈ ∪ (𝑅1 “ On)) | |
| 20 | 18, 19 | mpan2 691 | . . 3 ⊢ (𝒫 ∪ 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 21 | 17, 20 | sylbi 217 | . 2 ⊢ (∪ 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 22 | 16, 21 | impbii 209 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 Tr wtr 5214 dom cdm 5638 “ cima 5641 Oncon0 6332 suc csuc 6334 ‘cfv 6511 𝑅1cr1 9715 rankcrnk 9716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: rankuni2b 9806 r1limwun 10689 wfgru 10769 dmwf 44955 rnwf 44956 wfaxun 44989 wfac8prim 44992 |
| Copyright terms: Public domain | W3C validator |