MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphdis Structured version   Visualization version   GIF version

Theorem hmphdis 23699
Description: Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1 𝑋 = 𝐽
Assertion
Ref Expression
hmphdis (𝐽 ≃ 𝒫 𝐴𝐽 = 𝒫 𝑋)

Proof of Theorem hmphdis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwuni 4898 . . . 4 𝐽 ⊆ 𝒫 𝐽
2 hmphdis.1 . . . . 5 𝑋 = 𝐽
32pweqi 4569 . . . 4 𝒫 𝑋 = 𝒫 𝐽
41, 3sseqtrri 3987 . . 3 𝐽 ⊆ 𝒫 𝑋
54a1i 11 . 2 (𝐽 ≃ 𝒫 𝐴𝐽 ⊆ 𝒫 𝑋)
6 hmph 23679 . . 3 (𝐽 ≃ 𝒫 𝐴 ↔ (𝐽Homeo𝒫 𝐴) ≠ ∅)
7 n0 4306 . . . 4 ((𝐽Homeo𝒫 𝐴) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴))
8 elpwi 4560 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
9 imassrn 6026 . . . . . . . . . . 11 (𝑓𝑥) ⊆ ran 𝑓
10 unipw 5397 . . . . . . . . . . . . . . 15 𝒫 𝐴 = 𝐴
1110eqcomi 2738 . . . . . . . . . . . . . 14 𝐴 = 𝒫 𝐴
122, 11hmeof1o 23667 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝑓:𝑋1-1-onto𝐴)
13 f1of 6768 . . . . . . . . . . . . 13 (𝑓:𝑋1-1-onto𝐴𝑓:𝑋𝐴)
14 frn 6663 . . . . . . . . . . . . 13 (𝑓:𝑋𝐴 → ran 𝑓𝐴)
1512, 13, 143syl 18 . . . . . . . . . . . 12 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → ran 𝑓𝐴)
1615adantr 480 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → ran 𝑓𝐴)
179, 16sstrid 3949 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑓𝑥) ⊆ 𝐴)
18 vex 3442 . . . . . . . . . . . 12 𝑓 ∈ V
1918imaex 7854 . . . . . . . . . . 11 (𝑓𝑥) ∈ V
2019elpw 4557 . . . . . . . . . 10 ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴)
2117, 20sylibr 234 . . . . . . . . 9 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ 𝒫 𝐴)
222hmeoopn 23669 . . . . . . . . 9 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑥𝐽 ↔ (𝑓𝑥) ∈ 𝒫 𝐴))
2321, 22mpbird 257 . . . . . . . 8 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → 𝑥𝐽)
2423ex 412 . . . . . . 7 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥𝑋𝑥𝐽))
258, 24syl5 34 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑋𝑥𝐽))
2625ssrdv 3943 . . . . 5 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋𝐽)
2726exlimiv 1930 . . . 4 (∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋𝐽)
287, 27sylbi 217 . . 3 ((𝐽Homeo𝒫 𝐴) ≠ ∅ → 𝒫 𝑋𝐽)
296, 28sylbi 217 . 2 (𝐽 ≃ 𝒫 𝐴 → 𝒫 𝑋𝐽)
305, 29eqssd 3955 1 (𝐽 ≃ 𝒫 𝐴𝐽 = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wss 3905  c0 4286  𝒫 cpw 4553   cuni 4861   class class class wbr 5095  ran crn 5624  cima 5626  wf 6482  1-1-ontowf1o 6485  (class class class)co 7353  Homeochmeo 23656  chmph 23657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-1o 8395  df-map 8762  df-top 22797  df-topon 22814  df-cn 23130  df-hmeo 23658  df-hmph 23659
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator