| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmphdis | Structured version Visualization version GIF version | ||
| Description: Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| hmphdis.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| hmphdis | ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuni 4898 | . . . 4 ⊢ 𝐽 ⊆ 𝒫 ∪ 𝐽 | |
| 2 | hmphdis.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | pweqi 4567 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ 𝐽 |
| 4 | 1, 3 | sseqtrri 3981 | . . 3 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 ⊆ 𝒫 𝑋) |
| 6 | hmph 23701 | . . 3 ⊢ (𝐽 ≃ 𝒫 𝐴 ↔ (𝐽Homeo𝒫 𝐴) ≠ ∅) | |
| 7 | n0 4304 | . . . 4 ⊢ ((𝐽Homeo𝒫 𝐴) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴)) | |
| 8 | elpwi 4558 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
| 9 | imassrn 6027 | . . . . . . . . . . 11 ⊢ (𝑓 “ 𝑥) ⊆ ran 𝑓 | |
| 10 | unipw 5395 | . . . . . . . . . . . . . . 15 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 11 | 10 | eqcomi 2742 | . . . . . . . . . . . . . 14 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 12 | 2, 11 | hmeof1o 23689 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝑓:𝑋–1-1-onto→𝐴) |
| 13 | f1of 6771 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑋–1-1-onto→𝐴 → 𝑓:𝑋⟶𝐴) | |
| 14 | frn 6666 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑋⟶𝐴 → ran 𝑓 ⊆ 𝐴) | |
| 15 | 12, 13, 14 | 3syl 18 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → ran 𝑓 ⊆ 𝐴) |
| 16 | 15 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → ran 𝑓 ⊆ 𝐴) |
| 17 | 9, 16 | sstrid 3943 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → (𝑓 “ 𝑥) ⊆ 𝐴) |
| 18 | vex 3442 | . . . . . . . . . . . 12 ⊢ 𝑓 ∈ V | |
| 19 | 18 | imaex 7853 | . . . . . . . . . . 11 ⊢ (𝑓 “ 𝑥) ∈ V |
| 20 | 19 | elpw 4555 | . . . . . . . . . 10 ⊢ ((𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (𝑓 “ 𝑥) ⊆ 𝐴) |
| 21 | 17, 20 | sylibr 234 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → (𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
| 22 | 2 | hmeoopn 23691 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↔ (𝑓 “ 𝑥) ∈ 𝒫 𝐴)) |
| 23 | 21, 22 | mpbird 257 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → 𝑥 ∈ 𝐽) |
| 24 | 23 | ex 412 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐽)) |
| 25 | 8, 24 | syl5 34 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑋 → 𝑥 ∈ 𝐽)) |
| 26 | 25 | ssrdv 3937 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋 ⊆ 𝐽) |
| 27 | 26 | exlimiv 1931 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋 ⊆ 𝐽) |
| 28 | 7, 27 | sylbi 217 | . . 3 ⊢ ((𝐽Homeo𝒫 𝐴) ≠ ∅ → 𝒫 𝑋 ⊆ 𝐽) |
| 29 | 6, 28 | sylbi 217 | . 2 ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝒫 𝑋 ⊆ 𝐽) |
| 30 | 5, 29 | eqssd 3949 | 1 ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2930 ⊆ wss 3899 ∅c0 4284 𝒫 cpw 4551 ∪ cuni 4860 class class class wbr 5095 ran crn 5622 “ cima 5624 ⟶wf 6485 –1-1-onto→wf1o 6488 (class class class)co 7355 Homeochmeo 23678 ≃ chmph 23679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-1o 8394 df-map 8761 df-top 22819 df-topon 22836 df-cn 23152 df-hmeo 23680 df-hmph 23681 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |