MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphdis Structured version   Visualization version   GIF version

Theorem hmphdis 23734
Description: Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1 𝑋 = 𝐽
Assertion
Ref Expression
hmphdis (𝐽 ≃ 𝒫 𝐴𝐽 = 𝒫 𝑋)

Proof of Theorem hmphdis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwuni 4921 . . . 4 𝐽 ⊆ 𝒫 𝐽
2 hmphdis.1 . . . . 5 𝑋 = 𝐽
32pweqi 4591 . . . 4 𝒫 𝑋 = 𝒫 𝐽
41, 3sseqtrri 4008 . . 3 𝐽 ⊆ 𝒫 𝑋
54a1i 11 . 2 (𝐽 ≃ 𝒫 𝐴𝐽 ⊆ 𝒫 𝑋)
6 hmph 23714 . . 3 (𝐽 ≃ 𝒫 𝐴 ↔ (𝐽Homeo𝒫 𝐴) ≠ ∅)
7 n0 4328 . . . 4 ((𝐽Homeo𝒫 𝐴) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴))
8 elpwi 4582 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
9 imassrn 6058 . . . . . . . . . . 11 (𝑓𝑥) ⊆ ran 𝑓
10 unipw 5425 . . . . . . . . . . . . . . 15 𝒫 𝐴 = 𝐴
1110eqcomi 2744 . . . . . . . . . . . . . 14 𝐴 = 𝒫 𝐴
122, 11hmeof1o 23702 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝑓:𝑋1-1-onto𝐴)
13 f1of 6818 . . . . . . . . . . . . 13 (𝑓:𝑋1-1-onto𝐴𝑓:𝑋𝐴)
14 frn 6713 . . . . . . . . . . . . 13 (𝑓:𝑋𝐴 → ran 𝑓𝐴)
1512, 13, 143syl 18 . . . . . . . . . . . 12 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → ran 𝑓𝐴)
1615adantr 480 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → ran 𝑓𝐴)
179, 16sstrid 3970 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑓𝑥) ⊆ 𝐴)
18 vex 3463 . . . . . . . . . . . 12 𝑓 ∈ V
1918imaex 7910 . . . . . . . . . . 11 (𝑓𝑥) ∈ V
2019elpw 4579 . . . . . . . . . 10 ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴)
2117, 20sylibr 234 . . . . . . . . 9 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ 𝒫 𝐴)
222hmeoopn 23704 . . . . . . . . 9 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑥𝐽 ↔ (𝑓𝑥) ∈ 𝒫 𝐴))
2321, 22mpbird 257 . . . . . . . 8 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → 𝑥𝐽)
2423ex 412 . . . . . . 7 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥𝑋𝑥𝐽))
258, 24syl5 34 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑋𝑥𝐽))
2625ssrdv 3964 . . . . 5 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋𝐽)
2726exlimiv 1930 . . . 4 (∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋𝐽)
287, 27sylbi 217 . . 3 ((𝐽Homeo𝒫 𝐴) ≠ ∅ → 𝒫 𝑋𝐽)
296, 28sylbi 217 . 2 (𝐽 ≃ 𝒫 𝐴 → 𝒫 𝑋𝐽)
305, 29eqssd 3976 1 (𝐽 ≃ 𝒫 𝐴𝐽 = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wss 3926  c0 4308  𝒫 cpw 4575   cuni 4883   class class class wbr 5119  ran crn 5655  cima 5657  wf 6527  1-1-ontowf1o 6530  (class class class)co 7405  Homeochmeo 23691  chmph 23692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-1o 8480  df-map 8842  df-top 22832  df-topon 22849  df-cn 23165  df-hmeo 23693  df-hmph 23694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator