MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphdis Structured version   Visualization version   GIF version

Theorem hmphdis 23820
Description: Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1 𝑋 = 𝐽
Assertion
Ref Expression
hmphdis (𝐽 ≃ 𝒫 𝐴𝐽 = 𝒫 𝑋)

Proof of Theorem hmphdis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwuni 4950 . . . 4 𝐽 ⊆ 𝒫 𝐽
2 hmphdis.1 . . . . 5 𝑋 = 𝐽
32pweqi 4621 . . . 4 𝒫 𝑋 = 𝒫 𝐽
41, 3sseqtrri 4033 . . 3 𝐽 ⊆ 𝒫 𝑋
54a1i 11 . 2 (𝐽 ≃ 𝒫 𝐴𝐽 ⊆ 𝒫 𝑋)
6 hmph 23800 . . 3 (𝐽 ≃ 𝒫 𝐴 ↔ (𝐽Homeo𝒫 𝐴) ≠ ∅)
7 n0 4359 . . . 4 ((𝐽Homeo𝒫 𝐴) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴))
8 elpwi 4612 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
9 imassrn 6091 . . . . . . . . . . 11 (𝑓𝑥) ⊆ ran 𝑓
10 unipw 5461 . . . . . . . . . . . . . . 15 𝒫 𝐴 = 𝐴
1110eqcomi 2744 . . . . . . . . . . . . . 14 𝐴 = 𝒫 𝐴
122, 11hmeof1o 23788 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝑓:𝑋1-1-onto𝐴)
13 f1of 6849 . . . . . . . . . . . . 13 (𝑓:𝑋1-1-onto𝐴𝑓:𝑋𝐴)
14 frn 6744 . . . . . . . . . . . . 13 (𝑓:𝑋𝐴 → ran 𝑓𝐴)
1512, 13, 143syl 18 . . . . . . . . . . . 12 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → ran 𝑓𝐴)
1615adantr 480 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → ran 𝑓𝐴)
179, 16sstrid 4007 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑓𝑥) ⊆ 𝐴)
18 vex 3482 . . . . . . . . . . . 12 𝑓 ∈ V
1918imaex 7937 . . . . . . . . . . 11 (𝑓𝑥) ∈ V
2019elpw 4609 . . . . . . . . . 10 ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴)
2117, 20sylibr 234 . . . . . . . . 9 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ 𝒫 𝐴)
222hmeoopn 23790 . . . . . . . . 9 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑥𝐽 ↔ (𝑓𝑥) ∈ 𝒫 𝐴))
2321, 22mpbird 257 . . . . . . . 8 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → 𝑥𝐽)
2423ex 412 . . . . . . 7 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥𝑋𝑥𝐽))
258, 24syl5 34 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑋𝑥𝐽))
2625ssrdv 4001 . . . . 5 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋𝐽)
2726exlimiv 1928 . . . 4 (∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋𝐽)
287, 27sylbi 217 . . 3 ((𝐽Homeo𝒫 𝐴) ≠ ∅ → 𝒫 𝑋𝐽)
296, 28sylbi 217 . 2 (𝐽 ≃ 𝒫 𝐴 → 𝒫 𝑋𝐽)
305, 29eqssd 4013 1 (𝐽 ≃ 𝒫 𝐴𝐽 = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wss 3963  c0 4339  𝒫 cpw 4605   cuni 4912   class class class wbr 5148  ran crn 5690  cima 5692  wf 6559  1-1-ontowf1o 6562  (class class class)co 7431  Homeochmeo 23777  chmph 23778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-1o 8505  df-map 8867  df-top 22916  df-topon 22933  df-cn 23251  df-hmeo 23779  df-hmph 23780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator