Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmphdis | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
hmphdis.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hmphdis | ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni 4883 | . . . 4 ⊢ 𝐽 ⊆ 𝒫 ∪ 𝐽 | |
2 | hmphdis.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | pweqi 4556 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ 𝐽 |
4 | 1, 3 | sseqtrri 3962 | . . 3 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
5 | 4 | a1i 11 | . 2 ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 ⊆ 𝒫 𝑋) |
6 | hmph 22908 | . . 3 ⊢ (𝐽 ≃ 𝒫 𝐴 ↔ (𝐽Homeo𝒫 𝐴) ≠ ∅) | |
7 | n0 4285 | . . . 4 ⊢ ((𝐽Homeo𝒫 𝐴) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴)) | |
8 | elpwi 4547 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
9 | imassrn 5977 | . . . . . . . . . . 11 ⊢ (𝑓 “ 𝑥) ⊆ ran 𝑓 | |
10 | unipw 5368 | . . . . . . . . . . . . . . 15 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
11 | 10 | eqcomi 2748 | . . . . . . . . . . . . . 14 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
12 | 2, 11 | hmeof1o 22896 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝑓:𝑋–1-1-onto→𝐴) |
13 | f1of 6712 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑋–1-1-onto→𝐴 → 𝑓:𝑋⟶𝐴) | |
14 | frn 6603 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑋⟶𝐴 → ran 𝑓 ⊆ 𝐴) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → ran 𝑓 ⊆ 𝐴) |
16 | 15 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → ran 𝑓 ⊆ 𝐴) |
17 | 9, 16 | sstrid 3936 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → (𝑓 “ 𝑥) ⊆ 𝐴) |
18 | vex 3434 | . . . . . . . . . . . 12 ⊢ 𝑓 ∈ V | |
19 | 18 | imaex 7750 | . . . . . . . . . . 11 ⊢ (𝑓 “ 𝑥) ∈ V |
20 | 19 | elpw 4542 | . . . . . . . . . 10 ⊢ ((𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (𝑓 “ 𝑥) ⊆ 𝐴) |
21 | 17, 20 | sylibr 233 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → (𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
22 | 2 | hmeoopn 22898 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↔ (𝑓 “ 𝑥) ∈ 𝒫 𝐴)) |
23 | 21, 22 | mpbird 256 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → 𝑥 ∈ 𝐽) |
24 | 23 | ex 412 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐽)) |
25 | 8, 24 | syl5 34 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑋 → 𝑥 ∈ 𝐽)) |
26 | 25 | ssrdv 3931 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋 ⊆ 𝐽) |
27 | 26 | exlimiv 1936 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋 ⊆ 𝐽) |
28 | 7, 27 | sylbi 216 | . . 3 ⊢ ((𝐽Homeo𝒫 𝐴) ≠ ∅ → 𝒫 𝑋 ⊆ 𝐽) |
29 | 6, 28 | sylbi 216 | . 2 ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝒫 𝑋 ⊆ 𝐽) |
30 | 5, 29 | eqssd 3942 | 1 ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1785 ∈ wcel 2109 ≠ wne 2944 ⊆ wss 3891 ∅c0 4261 𝒫 cpw 4538 ∪ cuni 4844 class class class wbr 5078 ran crn 5589 “ cima 5591 ⟶wf 6426 –1-1-onto→wf1o 6429 (class class class)co 7268 Homeochmeo 22885 ≃ chmph 22886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-1o 8281 df-map 8591 df-top 22024 df-topon 22041 df-cn 22359 df-hmeo 22887 df-hmph 22888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |