MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphdis Structured version   Visualization version   GIF version

Theorem hmphdis 23786
Description: Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1 𝑋 = 𝐽
Assertion
Ref Expression
hmphdis (𝐽 ≃ 𝒫 𝐴𝐽 = 𝒫 𝑋)

Proof of Theorem hmphdis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwuni 4946 . . . 4 𝐽 ⊆ 𝒫 𝐽
2 hmphdis.1 . . . . 5 𝑋 = 𝐽
32pweqi 4614 . . . 4 𝒫 𝑋 = 𝒫 𝐽
41, 3sseqtrri 4017 . . 3 𝐽 ⊆ 𝒫 𝑋
54a1i 11 . 2 (𝐽 ≃ 𝒫 𝐴𝐽 ⊆ 𝒫 𝑋)
6 hmph 23766 . . 3 (𝐽 ≃ 𝒫 𝐴 ↔ (𝐽Homeo𝒫 𝐴) ≠ ∅)
7 n0 4347 . . . 4 ((𝐽Homeo𝒫 𝐴) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴))
8 elpwi 4605 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
9 imassrn 6071 . . . . . . . . . . 11 (𝑓𝑥) ⊆ ran 𝑓
10 unipw 5447 . . . . . . . . . . . . . . 15 𝒫 𝐴 = 𝐴
1110eqcomi 2735 . . . . . . . . . . . . . 14 𝐴 = 𝒫 𝐴
122, 11hmeof1o 23754 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝑓:𝑋1-1-onto𝐴)
13 f1of 6833 . . . . . . . . . . . . 13 (𝑓:𝑋1-1-onto𝐴𝑓:𝑋𝐴)
14 frn 6725 . . . . . . . . . . . . 13 (𝑓:𝑋𝐴 → ran 𝑓𝐴)
1512, 13, 143syl 18 . . . . . . . . . . . 12 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → ran 𝑓𝐴)
1615adantr 479 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → ran 𝑓𝐴)
179, 16sstrid 3991 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑓𝑥) ⊆ 𝐴)
18 vex 3467 . . . . . . . . . . . 12 𝑓 ∈ V
1918imaex 7917 . . . . . . . . . . 11 (𝑓𝑥) ∈ V
2019elpw 4602 . . . . . . . . . 10 ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴)
2117, 20sylibr 233 . . . . . . . . 9 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ 𝒫 𝐴)
222hmeoopn 23756 . . . . . . . . 9 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑥𝐽 ↔ (𝑓𝑥) ∈ 𝒫 𝐴))
2321, 22mpbird 256 . . . . . . . 8 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → 𝑥𝐽)
2423ex 411 . . . . . . 7 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥𝑋𝑥𝐽))
258, 24syl5 34 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑋𝑥𝐽))
2625ssrdv 3985 . . . . 5 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋𝐽)
2726exlimiv 1926 . . . 4 (∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋𝐽)
287, 27sylbi 216 . . 3 ((𝐽Homeo𝒫 𝐴) ≠ ∅ → 𝒫 𝑋𝐽)
296, 28sylbi 216 . 2 (𝐽 ≃ 𝒫 𝐴 → 𝒫 𝑋𝐽)
305, 29eqssd 3997 1 (𝐽 ≃ 𝒫 𝐴𝐽 = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wex 1774  wcel 2099  wne 2930  wss 3947  c0 4323  𝒫 cpw 4598   cuni 4906   class class class wbr 5144  ran crn 5674  cima 5676  wf 6540  1-1-ontowf1o 6543  (class class class)co 7414  Homeochmeo 23743  chmph 23744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7993  df-2nd 7994  df-1o 8486  df-map 8847  df-top 22882  df-topon 22899  df-cn 23217  df-hmeo 23745  df-hmph 23746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator