| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmphdis | Structured version Visualization version GIF version | ||
| Description: Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| hmphdis.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| hmphdis | ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuni 4921 | . . . 4 ⊢ 𝐽 ⊆ 𝒫 ∪ 𝐽 | |
| 2 | hmphdis.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | pweqi 4591 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ 𝐽 |
| 4 | 1, 3 | sseqtrri 4008 | . . 3 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 ⊆ 𝒫 𝑋) |
| 6 | hmph 23714 | . . 3 ⊢ (𝐽 ≃ 𝒫 𝐴 ↔ (𝐽Homeo𝒫 𝐴) ≠ ∅) | |
| 7 | n0 4328 | . . . 4 ⊢ ((𝐽Homeo𝒫 𝐴) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴)) | |
| 8 | elpwi 4582 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
| 9 | imassrn 6058 | . . . . . . . . . . 11 ⊢ (𝑓 “ 𝑥) ⊆ ran 𝑓 | |
| 10 | unipw 5425 | . . . . . . . . . . . . . . 15 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 11 | 10 | eqcomi 2744 | . . . . . . . . . . . . . 14 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 12 | 2, 11 | hmeof1o 23702 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝑓:𝑋–1-1-onto→𝐴) |
| 13 | f1of 6818 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑋–1-1-onto→𝐴 → 𝑓:𝑋⟶𝐴) | |
| 14 | frn 6713 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑋⟶𝐴 → ran 𝑓 ⊆ 𝐴) | |
| 15 | 12, 13, 14 | 3syl 18 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → ran 𝑓 ⊆ 𝐴) |
| 16 | 15 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → ran 𝑓 ⊆ 𝐴) |
| 17 | 9, 16 | sstrid 3970 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → (𝑓 “ 𝑥) ⊆ 𝐴) |
| 18 | vex 3463 | . . . . . . . . . . . 12 ⊢ 𝑓 ∈ V | |
| 19 | 18 | imaex 7910 | . . . . . . . . . . 11 ⊢ (𝑓 “ 𝑥) ∈ V |
| 20 | 19 | elpw 4579 | . . . . . . . . . 10 ⊢ ((𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (𝑓 “ 𝑥) ⊆ 𝐴) |
| 21 | 17, 20 | sylibr 234 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → (𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
| 22 | 2 | hmeoopn 23704 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↔ (𝑓 “ 𝑥) ∈ 𝒫 𝐴)) |
| 23 | 21, 22 | mpbird 257 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → 𝑥 ∈ 𝐽) |
| 24 | 23 | ex 412 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐽)) |
| 25 | 8, 24 | syl5 34 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑋 → 𝑥 ∈ 𝐽)) |
| 26 | 25 | ssrdv 3964 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋 ⊆ 𝐽) |
| 27 | 26 | exlimiv 1930 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋 ⊆ 𝐽) |
| 28 | 7, 27 | sylbi 217 | . . 3 ⊢ ((𝐽Homeo𝒫 𝐴) ≠ ∅ → 𝒫 𝑋 ⊆ 𝐽) |
| 29 | 6, 28 | sylbi 217 | . 2 ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝒫 𝑋 ⊆ 𝐽) |
| 30 | 5, 29 | eqssd 3976 | 1 ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 ∪ cuni 4883 class class class wbr 5119 ran crn 5655 “ cima 5657 ⟶wf 6527 –1-1-onto→wf1o 6530 (class class class)co 7405 Homeochmeo 23691 ≃ chmph 23692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-1o 8480 df-map 8842 df-top 22832 df-topon 22849 df-cn 23165 df-hmeo 23693 df-hmph 23694 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |