Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmphdis | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
hmphdis.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hmphdis | ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwuni 4885 | . . . 4 ⊢ 𝐽 ⊆ 𝒫 ∪ 𝐽 | |
2 | hmphdis.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | pweqi 4555 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ 𝐽 |
4 | 1, 3 | sseqtrri 3963 | . . 3 ⊢ 𝐽 ⊆ 𝒫 𝑋 |
5 | 4 | a1i 11 | . 2 ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 ⊆ 𝒫 𝑋) |
6 | hmph 22972 | . . 3 ⊢ (𝐽 ≃ 𝒫 𝐴 ↔ (𝐽Homeo𝒫 𝐴) ≠ ∅) | |
7 | n0 4286 | . . . 4 ⊢ ((𝐽Homeo𝒫 𝐴) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴)) | |
8 | elpwi 4546 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
9 | imassrn 5990 | . . . . . . . . . . 11 ⊢ (𝑓 “ 𝑥) ⊆ ran 𝑓 | |
10 | unipw 5379 | . . . . . . . . . . . . . . 15 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
11 | 10 | eqcomi 2745 | . . . . . . . . . . . . . 14 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
12 | 2, 11 | hmeof1o 22960 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝑓:𝑋–1-1-onto→𝐴) |
13 | f1of 6746 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑋–1-1-onto→𝐴 → 𝑓:𝑋⟶𝐴) | |
14 | frn 6637 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑋⟶𝐴 → ran 𝑓 ⊆ 𝐴) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → ran 𝑓 ⊆ 𝐴) |
16 | 15 | adantr 482 | . . . . . . . . . . 11 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → ran 𝑓 ⊆ 𝐴) |
17 | 9, 16 | sstrid 3937 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → (𝑓 “ 𝑥) ⊆ 𝐴) |
18 | vex 3441 | . . . . . . . . . . . 12 ⊢ 𝑓 ∈ V | |
19 | 18 | imaex 7795 | . . . . . . . . . . 11 ⊢ (𝑓 “ 𝑥) ∈ V |
20 | 19 | elpw 4543 | . . . . . . . . . 10 ⊢ ((𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (𝑓 “ 𝑥) ⊆ 𝐴) |
21 | 17, 20 | sylibr 233 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → (𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
22 | 2 | hmeoopn 22962 | . . . . . . . . 9 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↔ (𝑓 “ 𝑥) ∈ 𝒫 𝐴)) |
23 | 21, 22 | mpbird 257 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥 ⊆ 𝑋) → 𝑥 ∈ 𝐽) |
24 | 23 | ex 414 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐽)) |
25 | 8, 24 | syl5 34 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑋 → 𝑥 ∈ 𝐽)) |
26 | 25 | ssrdv 3932 | . . . . 5 ⊢ (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋 ⊆ 𝐽) |
27 | 26 | exlimiv 1931 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋 ⊆ 𝐽) |
28 | 7, 27 | sylbi 216 | . . 3 ⊢ ((𝐽Homeo𝒫 𝐴) ≠ ∅ → 𝒫 𝑋 ⊆ 𝐽) |
29 | 6, 28 | sylbi 216 | . 2 ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝒫 𝑋 ⊆ 𝐽) |
30 | 5, 29 | eqssd 3943 | 1 ⊢ (𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ≠ wne 2941 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 ∪ cuni 4844 class class class wbr 5081 ran crn 5601 “ cima 5603 ⟶wf 6454 –1-1-onto→wf1o 6457 (class class class)co 7307 Homeochmeo 22949 ≃ chmph 22950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-1o 8328 df-map 8648 df-top 22088 df-topon 22105 df-cn 22423 df-hmeo 22951 df-hmph 22952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |