MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphdis Structured version   Visualization version   GIF version

Theorem hmphdis 22992
Description: Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1 𝑋 = 𝐽
Assertion
Ref Expression
hmphdis (𝐽 ≃ 𝒫 𝐴𝐽 = 𝒫 𝑋)

Proof of Theorem hmphdis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwuni 4885 . . . 4 𝐽 ⊆ 𝒫 𝐽
2 hmphdis.1 . . . . 5 𝑋 = 𝐽
32pweqi 4555 . . . 4 𝒫 𝑋 = 𝒫 𝐽
41, 3sseqtrri 3963 . . 3 𝐽 ⊆ 𝒫 𝑋
54a1i 11 . 2 (𝐽 ≃ 𝒫 𝐴𝐽 ⊆ 𝒫 𝑋)
6 hmph 22972 . . 3 (𝐽 ≃ 𝒫 𝐴 ↔ (𝐽Homeo𝒫 𝐴) ≠ ∅)
7 n0 4286 . . . 4 ((𝐽Homeo𝒫 𝐴) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴))
8 elpwi 4546 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
9 imassrn 5990 . . . . . . . . . . 11 (𝑓𝑥) ⊆ ran 𝑓
10 unipw 5379 . . . . . . . . . . . . . . 15 𝒫 𝐴 = 𝐴
1110eqcomi 2745 . . . . . . . . . . . . . 14 𝐴 = 𝒫 𝐴
122, 11hmeof1o 22960 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝑓:𝑋1-1-onto𝐴)
13 f1of 6746 . . . . . . . . . . . . 13 (𝑓:𝑋1-1-onto𝐴𝑓:𝑋𝐴)
14 frn 6637 . . . . . . . . . . . . 13 (𝑓:𝑋𝐴 → ran 𝑓𝐴)
1512, 13, 143syl 18 . . . . . . . . . . . 12 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → ran 𝑓𝐴)
1615adantr 482 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → ran 𝑓𝐴)
179, 16sstrid 3937 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑓𝑥) ⊆ 𝐴)
18 vex 3441 . . . . . . . . . . . 12 𝑓 ∈ V
1918imaex 7795 . . . . . . . . . . 11 (𝑓𝑥) ∈ V
2019elpw 4543 . . . . . . . . . 10 ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴)
2117, 20sylibr 233 . . . . . . . . 9 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ 𝒫 𝐴)
222hmeoopn 22962 . . . . . . . . 9 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → (𝑥𝐽 ↔ (𝑓𝑥) ∈ 𝒫 𝐴))
2321, 22mpbird 257 . . . . . . . 8 ((𝑓 ∈ (𝐽Homeo𝒫 𝐴) ∧ 𝑥𝑋) → 𝑥𝐽)
2423ex 414 . . . . . . 7 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥𝑋𝑥𝐽))
258, 24syl5 34 . . . . . 6 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑋𝑥𝐽))
2625ssrdv 3932 . . . . 5 (𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋𝐽)
2726exlimiv 1931 . . . 4 (∃𝑓 𝑓 ∈ (𝐽Homeo𝒫 𝐴) → 𝒫 𝑋𝐽)
287, 27sylbi 216 . . 3 ((𝐽Homeo𝒫 𝐴) ≠ ∅ → 𝒫 𝑋𝐽)
296, 28sylbi 216 . 2 (𝐽 ≃ 𝒫 𝐴 → 𝒫 𝑋𝐽)
305, 29eqssd 3943 1 (𝐽 ≃ 𝒫 𝐴𝐽 = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wex 1779  wcel 2104  wne 2941  wss 3892  c0 4262  𝒫 cpw 4539   cuni 4844   class class class wbr 5081  ran crn 5601  cima 5603  wf 6454  1-1-ontowf1o 6457  (class class class)co 7307  Homeochmeo 22949  chmph 22950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-1o 8328  df-map 8648  df-top 22088  df-topon 22105  df-cn 22423  df-hmeo 22951  df-hmph 22952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator