MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fipwuni Structured version   Visualization version   GIF version

Theorem fipwuni 9370
Description: The set of finite intersections of a set is contained in the powerset of the union of the elements of 𝐴. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
fipwuni (fi‘𝐴) ⊆ 𝒫 𝐴

Proof of Theorem fipwuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexg 7681 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
21pwexd 5338 . . . 4 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
3 pwuni 4910 . . . 4 𝐴 ⊆ 𝒫 𝐴
4 fiss 9368 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝐴) → (fi‘𝐴) ⊆ (fi‘𝒫 𝐴))
52, 3, 4sylancl 587 . . 3 (𝐴 ∈ V → (fi‘𝐴) ⊆ (fi‘𝒫 𝐴))
6 ssinss1 4201 . . . . . . 7 (𝑥 𝐴 → (𝑥𝑦) ⊆ 𝐴)
7 vex 3451 . . . . . . . 8 𝑥 ∈ V
87elpw 4568 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥 𝐴)
97inex1 5278 . . . . . . . 8 (𝑥𝑦) ∈ V
109elpw 4568 . . . . . . 7 ((𝑥𝑦) ∈ 𝒫 𝐴 ↔ (𝑥𝑦) ⊆ 𝐴)
116, 8, 103imtr4i 292 . . . . . 6 (𝑥 ∈ 𝒫 𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴)
1211adantr 482 . . . . 5 ((𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴) → (𝑥𝑦) ∈ 𝒫 𝐴)
1312rgen2 3191 . . . 4 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴
14 inficl 9369 . . . . 5 (𝒫 𝐴 ∈ V → (∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴 ↔ (fi‘𝒫 𝐴) = 𝒫 𝐴))
152, 14syl 17 . . . 4 (𝐴 ∈ V → (∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴 ↔ (fi‘𝒫 𝐴) = 𝒫 𝐴))
1613, 15mpbii 232 . . 3 (𝐴 ∈ V → (fi‘𝒫 𝐴) = 𝒫 𝐴)
175, 16sseqtrd 3988 . 2 (𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 𝐴)
18 fvprc 6838 . . 3 𝐴 ∈ V → (fi‘𝐴) = ∅)
19 0ss 4360 . . 3 ∅ ⊆ 𝒫 𝐴
2018, 19eqsstrdi 4002 . 2 𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 𝐴)
2117, 20pm2.61i 182 1 (fi‘𝐴) ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1542  wcel 2107  wral 3061  Vcvv 3447  cin 3913  wss 3914  c0 4286  𝒫 cpw 4564   cuni 4869  cfv 6500  ficfi 9354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-om 7807  df-1o 8416  df-er 8654  df-en 8890  df-fin 8893  df-fi 9355
This theorem is referenced by:  fiuni  9372  ordtbas  22566
  Copyright terms: Public domain W3C validator