| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fipwuni | Structured version Visualization version GIF version | ||
| Description: The set of finite intersections of a set is contained in the powerset of the union of the elements of 𝐴. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| fipwuni | ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7719 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 2 | 1 | pwexd 5337 | . . . 4 ⊢ (𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ V) |
| 3 | pwuni 4912 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 4 | fiss 9382 | . . . 4 ⊢ ((𝒫 ∪ 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) → (fi‘𝐴) ⊆ (fi‘𝒫 ∪ 𝐴)) | |
| 5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝐴) ⊆ (fi‘𝒫 ∪ 𝐴)) |
| 6 | ssinss1 4212 | . . . . . . 7 ⊢ (𝑥 ⊆ ∪ 𝐴 → (𝑥 ∩ 𝑦) ⊆ ∪ 𝐴) | |
| 7 | vex 3454 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 8 | 7 | elpw 4570 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) |
| 9 | 7 | inex1 5275 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝑦) ∈ V |
| 10 | 9 | elpw 4570 | . . . . . . 7 ⊢ ((𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (𝑥 ∩ 𝑦) ⊆ ∪ 𝐴) |
| 11 | 6, 8, 10 | 3imtr4i 292 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ∪ 𝐴 ∧ 𝑦 ∈ 𝒫 ∪ 𝐴) → (𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴) |
| 13 | 12 | rgen2 3178 | . . . 4 ⊢ ∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 |
| 14 | inficl 9383 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ V → (∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴)) | |
| 15 | 2, 14 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴)) |
| 16 | 13, 15 | mpbii 233 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴) |
| 17 | 5, 16 | sseqtrd 3986 | . 2 ⊢ (𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴) |
| 18 | fvprc 6853 | . . 3 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) = ∅) | |
| 19 | 0ss 4366 | . . 3 ⊢ ∅ ⊆ 𝒫 ∪ 𝐴 | |
| 20 | 18, 19 | eqsstrdi 3994 | . 2 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴) |
| 21 | 17, 20 | pm2.61i 182 | 1 ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 ∪ cuni 4874 ‘cfv 6514 ficfi 9368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-2o 8438 df-en 8922 df-fin 8925 df-fi 9369 |
| This theorem is referenced by: fiuni 9386 ordtbas 23086 |
| Copyright terms: Public domain | W3C validator |