Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fipwuni | Structured version Visualization version GIF version |
Description: The set of finite intersections of a set is contained in the powerset of the union of the elements of 𝐴. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
fipwuni | ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7593 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
2 | 1 | pwexd 5302 | . . . 4 ⊢ (𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ V) |
3 | pwuni 4878 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
4 | fiss 9183 | . . . 4 ⊢ ((𝒫 ∪ 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) → (fi‘𝐴) ⊆ (fi‘𝒫 ∪ 𝐴)) | |
5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝐴) ⊆ (fi‘𝒫 ∪ 𝐴)) |
6 | ssinss1 4171 | . . . . . . 7 ⊢ (𝑥 ⊆ ∪ 𝐴 → (𝑥 ∩ 𝑦) ⊆ ∪ 𝐴) | |
7 | vex 3436 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
8 | 7 | elpw 4537 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) |
9 | 7 | inex1 5241 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝑦) ∈ V |
10 | 9 | elpw 4537 | . . . . . . 7 ⊢ ((𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (𝑥 ∩ 𝑦) ⊆ ∪ 𝐴) |
11 | 6, 8, 10 | 3imtr4i 292 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴) |
12 | 11 | adantr 481 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ∪ 𝐴 ∧ 𝑦 ∈ 𝒫 ∪ 𝐴) → (𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴) |
13 | 12 | rgen2 3120 | . . . 4 ⊢ ∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 |
14 | inficl 9184 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ V → (∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴)) | |
15 | 2, 14 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴)) |
16 | 13, 15 | mpbii 232 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴) |
17 | 5, 16 | sseqtrd 3961 | . 2 ⊢ (𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴) |
18 | fvprc 6766 | . . 3 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) = ∅) | |
19 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ 𝒫 ∪ 𝐴 | |
20 | 18, 19 | eqsstrdi 3975 | . 2 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴) |
21 | 17, 20 | pm2.61i 182 | 1 ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 ‘cfv 6433 ficfi 9169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-er 8498 df-en 8734 df-fin 8737 df-fi 9170 |
This theorem is referenced by: fiuni 9187 ordtbas 22343 |
Copyright terms: Public domain | W3C validator |