![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fipwuni | Structured version Visualization version GIF version |
Description: The set of finite intersections of a set is contained in the powerset of the union of the elements of 𝐴. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
fipwuni | ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7775 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
2 | 1 | pwexd 5397 | . . . 4 ⊢ (𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ V) |
3 | pwuni 4969 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
4 | fiss 9493 | . . . 4 ⊢ ((𝒫 ∪ 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) → (fi‘𝐴) ⊆ (fi‘𝒫 ∪ 𝐴)) | |
5 | 2, 3, 4 | sylancl 585 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝐴) ⊆ (fi‘𝒫 ∪ 𝐴)) |
6 | ssinss1 4267 | . . . . . . 7 ⊢ (𝑥 ⊆ ∪ 𝐴 → (𝑥 ∩ 𝑦) ⊆ ∪ 𝐴) | |
7 | vex 3492 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
8 | 7 | elpw 4626 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) |
9 | 7 | inex1 5335 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝑦) ∈ V |
10 | 9 | elpw 4626 | . . . . . . 7 ⊢ ((𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (𝑥 ∩ 𝑦) ⊆ ∪ 𝐴) |
11 | 6, 8, 10 | 3imtr4i 292 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴) |
12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ∪ 𝐴 ∧ 𝑦 ∈ 𝒫 ∪ 𝐴) → (𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴) |
13 | 12 | rgen2 3205 | . . . 4 ⊢ ∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 |
14 | inficl 9494 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ V → (∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴)) | |
15 | 2, 14 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴)) |
16 | 13, 15 | mpbii 233 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴) |
17 | 5, 16 | sseqtrd 4049 | . 2 ⊢ (𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴) |
18 | fvprc 6912 | . . 3 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) = ∅) | |
19 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ 𝒫 ∪ 𝐴 | |
20 | 18, 19 | eqsstrdi 4063 | . 2 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴) |
21 | 17, 20 | pm2.61i 182 | 1 ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 ‘cfv 6573 ficfi 9479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-2o 8523 df-en 9004 df-fin 9007 df-fi 9480 |
This theorem is referenced by: fiuni 9497 ordtbas 23221 |
Copyright terms: Public domain | W3C validator |