| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fipwuni | Structured version Visualization version GIF version | ||
| Description: The set of finite intersections of a set is contained in the powerset of the union of the elements of 𝐴. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| fipwuni | ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7742 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 2 | 1 | pwexd 5359 | . . . 4 ⊢ (𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ V) |
| 3 | pwuni 4925 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 4 | fiss 9446 | . . . 4 ⊢ ((𝒫 ∪ 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) → (fi‘𝐴) ⊆ (fi‘𝒫 ∪ 𝐴)) | |
| 5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝐴) ⊆ (fi‘𝒫 ∪ 𝐴)) |
| 6 | ssinss1 4226 | . . . . . . 7 ⊢ (𝑥 ⊆ ∪ 𝐴 → (𝑥 ∩ 𝑦) ⊆ ∪ 𝐴) | |
| 7 | vex 3467 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 8 | 7 | elpw 4584 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) |
| 9 | 7 | inex1 5297 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝑦) ∈ V |
| 10 | 9 | elpw 4584 | . . . . . . 7 ⊢ ((𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (𝑥 ∩ 𝑦) ⊆ ∪ 𝐴) |
| 11 | 6, 8, 10 | 3imtr4i 292 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ∪ 𝐴 ∧ 𝑦 ∈ 𝒫 ∪ 𝐴) → (𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴) |
| 13 | 12 | rgen2 3186 | . . . 4 ⊢ ∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 |
| 14 | inficl 9447 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ V → (∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴)) | |
| 15 | 2, 14 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴)) |
| 16 | 13, 15 | mpbii 233 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴) |
| 17 | 5, 16 | sseqtrd 4000 | . 2 ⊢ (𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴) |
| 18 | fvprc 6878 | . . 3 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) = ∅) | |
| 19 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ 𝒫 ∪ 𝐴 | |
| 20 | 18, 19 | eqsstrdi 4008 | . 2 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴) |
| 21 | 17, 20 | pm2.61i 182 | 1 ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4887 ‘cfv 6541 ficfi 9432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-1o 8488 df-2o 8489 df-en 8968 df-fin 8971 df-fi 9433 |
| This theorem is referenced by: fiuni 9450 ordtbas 23147 |
| Copyright terms: Public domain | W3C validator |