MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fipwuni Structured version   Visualization version   GIF version

Theorem fipwuni 8963
Description: The set of finite intersections of a set is contained in the powerset of the union of the elements of 𝐴. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
fipwuni (fi‘𝐴) ⊆ 𝒫 𝐴

Proof of Theorem fipwuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexg 7484 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
21pwexd 5246 . . . 4 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
3 pwuni 4835 . . . 4 𝐴 ⊆ 𝒫 𝐴
4 fiss 8961 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝐴) → (fi‘𝐴) ⊆ (fi‘𝒫 𝐴))
52, 3, 4sylancl 589 . . 3 (𝐴 ∈ V → (fi‘𝐴) ⊆ (fi‘𝒫 𝐴))
6 ssinss1 4128 . . . . . . 7 (𝑥 𝐴 → (𝑥𝑦) ⊆ 𝐴)
7 vex 3402 . . . . . . . 8 𝑥 ∈ V
87elpw 4492 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥 𝐴)
97inex1 5185 . . . . . . . 8 (𝑥𝑦) ∈ V
109elpw 4492 . . . . . . 7 ((𝑥𝑦) ∈ 𝒫 𝐴 ↔ (𝑥𝑦) ⊆ 𝐴)
116, 8, 103imtr4i 295 . . . . . 6 (𝑥 ∈ 𝒫 𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴)
1211adantr 484 . . . . 5 ((𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴) → (𝑥𝑦) ∈ 𝒫 𝐴)
1312rgen2 3115 . . . 4 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴
14 inficl 8962 . . . . 5 (𝒫 𝐴 ∈ V → (∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴 ↔ (fi‘𝒫 𝐴) = 𝒫 𝐴))
152, 14syl 17 . . . 4 (𝐴 ∈ V → (∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴 ↔ (fi‘𝒫 𝐴) = 𝒫 𝐴))
1613, 15mpbii 236 . . 3 (𝐴 ∈ V → (fi‘𝒫 𝐴) = 𝒫 𝐴)
175, 16sseqtrd 3917 . 2 (𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 𝐴)
18 fvprc 6666 . . 3 𝐴 ∈ V → (fi‘𝐴) = ∅)
19 0ss 4285 . . 3 ∅ ⊆ 𝒫 𝐴
2018, 19eqsstrdi 3931 . 2 𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 𝐴)
2117, 20pm2.61i 185 1 (fi‘𝐴) ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209   = wceq 1542  wcel 2114  wral 3053  Vcvv 3398  cin 3842  wss 3843  c0 4211  𝒫 cpw 4488   cuni 4796  cfv 6339  ficfi 8947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-om 7600  df-1o 8131  df-er 8320  df-en 8556  df-fin 8559  df-fi 8948
This theorem is referenced by:  fiuni  8965  ordtbas  21943
  Copyright terms: Public domain W3C validator