| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fipwuni | Structured version Visualization version GIF version | ||
| Description: The set of finite intersections of a set is contained in the powerset of the union of the elements of 𝐴. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| fipwuni | ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7673 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 2 | 1 | pwexd 5317 | . . . 4 ⊢ (𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ V) |
| 3 | pwuni 4896 | . . . 4 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 4 | fiss 9308 | . . . 4 ⊢ ((𝒫 ∪ 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴) → (fi‘𝐴) ⊆ (fi‘𝒫 ∪ 𝐴)) | |
| 5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝐴) ⊆ (fi‘𝒫 ∪ 𝐴)) |
| 6 | ssinss1 4196 | . . . . . . 7 ⊢ (𝑥 ⊆ ∪ 𝐴 → (𝑥 ∩ 𝑦) ⊆ ∪ 𝐴) | |
| 7 | vex 3440 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 8 | 7 | elpw 4554 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) |
| 9 | 7 | inex1 5255 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝑦) ∈ V |
| 10 | 9 | elpw 4554 | . . . . . . 7 ⊢ ((𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (𝑥 ∩ 𝑦) ⊆ ∪ 𝐴) |
| 11 | 6, 8, 10 | 3imtr4i 292 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ∪ 𝐴 ∧ 𝑦 ∈ 𝒫 ∪ 𝐴) → (𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴) |
| 13 | 12 | rgen2 3172 | . . . 4 ⊢ ∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 |
| 14 | inficl 9309 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ V → (∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴)) | |
| 15 | 2, 14 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ 𝒫 ∪ 𝐴∀𝑦 ∈ 𝒫 ∪ 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 ∪ 𝐴 ↔ (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴)) |
| 16 | 13, 15 | mpbii 233 | . . 3 ⊢ (𝐴 ∈ V → (fi‘𝒫 ∪ 𝐴) = 𝒫 ∪ 𝐴) |
| 17 | 5, 16 | sseqtrd 3971 | . 2 ⊢ (𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴) |
| 18 | fvprc 6814 | . . 3 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) = ∅) | |
| 19 | 0ss 4350 | . . 3 ⊢ ∅ ⊆ 𝒫 ∪ 𝐴 | |
| 20 | 18, 19 | eqsstrdi 3979 | . 2 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴) |
| 21 | 17, 20 | pm2.61i 182 | 1 ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 ∪ cuni 4859 ‘cfv 6481 ficfi 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-2o 8386 df-en 8870 df-fin 8873 df-fi 9295 |
| This theorem is referenced by: fiuni 9312 ordtbas 23105 |
| Copyright terms: Public domain | W3C validator |