Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragensspw | Structured version Visualization version GIF version |
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragensspw.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragensspw.x | ⊢ 𝑋 = ∪ dom 𝑂 |
caragensspw.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragensspw | ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragensspw.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | caragensspw.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
3 | 2 | caragenss 43932 | . . . 4 ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ dom 𝑂) |
5 | pwuni 4875 | . . . 4 ⊢ dom 𝑂 ⊆ 𝒫 ∪ dom 𝑂 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → dom 𝑂 ⊆ 𝒫 ∪ dom 𝑂) |
7 | 4, 6 | sstrd 3927 | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝒫 ∪ dom 𝑂) |
8 | caragensspw.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
9 | 8 | pweqi 4548 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
10 | 9 | eqcomi 2747 | . . 3 ⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋) |
12 | 7, 11 | sseqtrd 3957 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 dom cdm 5580 ‘cfv 6418 OutMeascome 43917 CaraGenccaragen 43919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-ome 43918 df-caragen 43920 |
This theorem is referenced by: caratheodorylem2 43955 |
Copyright terms: Public domain | W3C validator |