Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragensspw Structured version   Visualization version   GIF version

Theorem caragensspw 46514
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragensspw.o (𝜑𝑂 ∈ OutMeas)
caragensspw.x 𝑋 = dom 𝑂
caragensspw.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragensspw (𝜑𝑆 ⊆ 𝒫 𝑋)

Proof of Theorem caragensspw
StepHypRef Expression
1 caragensspw.o . . . 4 (𝜑𝑂 ∈ OutMeas)
2 caragensspw.s . . . . 5 𝑆 = (CaraGen‘𝑂)
32caragenss 46509 . . . 4 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
41, 3syl 17 . . 3 (𝜑𝑆 ⊆ dom 𝑂)
5 pwuni 4912 . . . 4 dom 𝑂 ⊆ 𝒫 dom 𝑂
65a1i 11 . . 3 (𝜑 → dom 𝑂 ⊆ 𝒫 dom 𝑂)
74, 6sstrd 3960 . 2 (𝜑𝑆 ⊆ 𝒫 dom 𝑂)
8 caragensspw.x . . . . 5 𝑋 = dom 𝑂
98pweqi 4582 . . . 4 𝒫 𝑋 = 𝒫 dom 𝑂
109eqcomi 2739 . . 3 𝒫 dom 𝑂 = 𝒫 𝑋
1110a1i 11 . 2 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋)
127, 11sseqtrd 3986 1 (𝜑𝑆 ⊆ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917  𝒫 cpw 4566   cuni 4874  dom cdm 5641  cfv 6514  OutMeascome 46494  CaraGenccaragen 46496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-ome 46495  df-caragen 46497
This theorem is referenced by:  caratheodorylem2  46532
  Copyright terms: Public domain W3C validator