| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragensspw | Structured version Visualization version GIF version | ||
| Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragensspw.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragensspw.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| caragensspw.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| Ref | Expression |
|---|---|
| caragensspw | ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caragensspw.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | caragensspw.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 3 | 2 | caragenss 46607 | . . . 4 ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ dom 𝑂) |
| 5 | pwuni 4896 | . . . 4 ⊢ dom 𝑂 ⊆ 𝒫 ∪ dom 𝑂 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → dom 𝑂 ⊆ 𝒫 ∪ dom 𝑂) |
| 7 | 4, 6 | sstrd 3940 | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝒫 ∪ dom 𝑂) |
| 8 | caragensspw.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 9 | 8 | pweqi 4565 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
| 10 | 9 | eqcomi 2740 | . . 3 ⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋) |
| 12 | 7, 11 | sseqtrd 3966 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4549 ∪ cuni 4858 dom cdm 5619 ‘cfv 6487 OutMeascome 46592 CaraGenccaragen 46594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fv 6495 df-ov 7355 df-ome 46593 df-caragen 46595 |
| This theorem is referenced by: caratheodorylem2 46630 |
| Copyright terms: Public domain | W3C validator |