![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragensspw | Structured version Visualization version GIF version |
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragensspw.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragensspw.x | ⊢ 𝑋 = ∪ dom 𝑂 |
caragensspw.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragensspw | ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragensspw.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | caragensspw.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
3 | 2 | caragenss 46425 | . . . 4 ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ dom 𝑂) |
5 | pwuni 4969 | . . . 4 ⊢ dom 𝑂 ⊆ 𝒫 ∪ dom 𝑂 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → dom 𝑂 ⊆ 𝒫 ∪ dom 𝑂) |
7 | 4, 6 | sstrd 4019 | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝒫 ∪ dom 𝑂) |
8 | caragensspw.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
9 | 8 | pweqi 4638 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
10 | 9 | eqcomi 2749 | . . 3 ⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋) |
12 | 7, 11 | sseqtrd 4049 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 dom cdm 5700 ‘cfv 6573 OutMeascome 46410 CaraGenccaragen 46412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-ome 46411 df-caragen 46413 |
This theorem is referenced by: caratheodorylem2 46448 |
Copyright terms: Public domain | W3C validator |