| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragensspw | Structured version Visualization version GIF version | ||
| Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragensspw.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragensspw.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| caragensspw.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| Ref | Expression |
|---|---|
| caragensspw | ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caragensspw.o | . . . 4 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | caragensspw.s | . . . . 5 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 3 | 2 | caragenss 46509 | . . . 4 ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ dom 𝑂) |
| 5 | pwuni 4912 | . . . 4 ⊢ dom 𝑂 ⊆ 𝒫 ∪ dom 𝑂 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → dom 𝑂 ⊆ 𝒫 ∪ dom 𝑂) |
| 7 | 4, 6 | sstrd 3960 | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝒫 ∪ dom 𝑂) |
| 8 | caragensspw.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 9 | 8 | pweqi 4582 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
| 10 | 9 | eqcomi 2739 | . . 3 ⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋) |
| 12 | 7, 11 | sseqtrd 3986 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 dom cdm 5641 ‘cfv 6514 OutMeascome 46494 CaraGenccaragen 46496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-ome 46495 df-caragen 46497 |
| This theorem is referenced by: caratheodorylem2 46532 |
| Copyright terms: Public domain | W3C validator |