Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragensspw Structured version   Visualization version   GIF version

Theorem caragensspw 46501
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragensspw.o (𝜑𝑂 ∈ OutMeas)
caragensspw.x 𝑋 = dom 𝑂
caragensspw.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragensspw (𝜑𝑆 ⊆ 𝒫 𝑋)

Proof of Theorem caragensspw
StepHypRef Expression
1 caragensspw.o . . . 4 (𝜑𝑂 ∈ OutMeas)
2 caragensspw.s . . . . 5 𝑆 = (CaraGen‘𝑂)
32caragenss 46496 . . . 4 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
41, 3syl 17 . . 3 (𝜑𝑆 ⊆ dom 𝑂)
5 pwuni 4905 . . . 4 dom 𝑂 ⊆ 𝒫 dom 𝑂
65a1i 11 . . 3 (𝜑 → dom 𝑂 ⊆ 𝒫 dom 𝑂)
74, 6sstrd 3954 . 2 (𝜑𝑆 ⊆ 𝒫 dom 𝑂)
8 caragensspw.x . . . . 5 𝑋 = dom 𝑂
98pweqi 4575 . . . 4 𝒫 𝑋 = 𝒫 dom 𝑂
109eqcomi 2738 . . 3 𝒫 dom 𝑂 = 𝒫 𝑋
1110a1i 11 . 2 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋)
127, 11sseqtrd 3980 1 (𝜑𝑆 ⊆ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911  𝒫 cpw 4559   cuni 4867  dom cdm 5631  cfv 6499  OutMeascome 46481  CaraGenccaragen 46483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-ome 46482  df-caragen 46484
This theorem is referenced by:  caratheodorylem2  46519
  Copyright terms: Public domain W3C validator