Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragensspw Structured version   Visualization version   GIF version

Theorem caragensspw 46612
Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragensspw.o (𝜑𝑂 ∈ OutMeas)
caragensspw.x 𝑋 = dom 𝑂
caragensspw.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragensspw (𝜑𝑆 ⊆ 𝒫 𝑋)

Proof of Theorem caragensspw
StepHypRef Expression
1 caragensspw.o . . . 4 (𝜑𝑂 ∈ OutMeas)
2 caragensspw.s . . . . 5 𝑆 = (CaraGen‘𝑂)
32caragenss 46607 . . . 4 (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂)
41, 3syl 17 . . 3 (𝜑𝑆 ⊆ dom 𝑂)
5 pwuni 4896 . . . 4 dom 𝑂 ⊆ 𝒫 dom 𝑂
65a1i 11 . . 3 (𝜑 → dom 𝑂 ⊆ 𝒫 dom 𝑂)
74, 6sstrd 3940 . 2 (𝜑𝑆 ⊆ 𝒫 dom 𝑂)
8 caragensspw.x . . . . 5 𝑋 = dom 𝑂
98pweqi 4565 . . . 4 𝒫 𝑋 = 𝒫 dom 𝑂
109eqcomi 2740 . . 3 𝒫 dom 𝑂 = 𝒫 𝑋
1110a1i 11 . 2 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋)
127, 11sseqtrd 3966 1 (𝜑𝑆 ⊆ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3897  𝒫 cpw 4549   cuni 4858  dom cdm 5619  cfv 6487  OutMeascome 46592  CaraGenccaragen 46594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fv 6495  df-ov 7355  df-ome 46593  df-caragen 46595
This theorem is referenced by:  caratheodorylem2  46630
  Copyright terms: Public domain W3C validator