MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbllem Structured version   Visualization version   GIF version

Theorem dyadmbllem 25653
Description: Lemma for dyadmbl 25654. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmbl.2 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
dyadmbl.3 (𝜑𝐴 ⊆ ran 𝐹)
Assertion
Ref Expression
dyadmbllem (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑧,𝐺   𝑤,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem dyadmbllem
Dummy variables 𝑎 𝑚 𝑡 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4935 . . . 4 (𝑎 ([,] “ 𝐴) ↔ ∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖)
2 iccf 13508 . . . . . . 7 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
3 ffn 6747 . . . . . . 7 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . . . 6 [,] Fn (ℝ* × ℝ*)
5 dyadmbl.3 . . . . . . 7 (𝜑𝐴 ⊆ ran 𝐹)
6 dyadmbl.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
76dyadf 25645 . . . . . . . . 9 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
8 frn 6754 . . . . . . . . 9 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
97, 8ax-mp 5 . . . . . . . 8 ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ))
10 inss2 4259 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
11 rexpssxrxp 11335 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
1210, 11sstri 4018 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
139, 12sstri 4018 . . . . . . 7 ran 𝐹 ⊆ (ℝ* × ℝ*)
145, 13sstrdi 4021 . . . . . 6 (𝜑𝐴 ⊆ (ℝ* × ℝ*))
15 eleq2 2833 . . . . . . 7 (𝑖 = ([,]‘𝑡) → (𝑎𝑖𝑎 ∈ ([,]‘𝑡)))
1615rexima 7275 . . . . . 6 (([,] Fn (ℝ* × ℝ*) ∧ 𝐴 ⊆ (ℝ* × ℝ*)) → (∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖 ↔ ∃𝑡𝐴 𝑎 ∈ ([,]‘𝑡)))
174, 14, 16sylancr 586 . . . . 5 (𝜑 → (∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖 ↔ ∃𝑡𝐴 𝑎 ∈ ([,]‘𝑡)))
18 ssrab2 4103 . . . . . . . . 9 {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ⊆ 𝐴
195adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → 𝐴 ⊆ ran 𝐹)
2018, 19sstrid 4020 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ⊆ ran 𝐹)
21 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → 𝑡𝐴)
22 ssid 4031 . . . . . . . . . 10 ([,]‘𝑡) ⊆ ([,]‘𝑡)
23 fveq2 6920 . . . . . . . . . . . 12 (𝑎 = 𝑡 → ([,]‘𝑎) = ([,]‘𝑡))
2423sseq2d 4041 . . . . . . . . . . 11 (𝑎 = 𝑡 → (([,]‘𝑡) ⊆ ([,]‘𝑎) ↔ ([,]‘𝑡) ⊆ ([,]‘𝑡)))
2524rspcev 3635 . . . . . . . . . 10 ((𝑡𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑡)) → ∃𝑎𝐴 ([,]‘𝑡) ⊆ ([,]‘𝑎))
2621, 22, 25sylancl 585 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → ∃𝑎𝐴 ([,]‘𝑡) ⊆ ([,]‘𝑎))
27 rabn0 4412 . . . . . . . . 9 ({𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ≠ ∅ ↔ ∃𝑎𝐴 ([,]‘𝑡) ⊆ ([,]‘𝑎))
2826, 27sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ≠ ∅)
296dyadmax 25652 . . . . . . . 8 (({𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ⊆ ran 𝐹 ∧ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ≠ ∅) → ∃𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)}∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))
3020, 28, 29syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → ∃𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)}∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))
31 fveq2 6920 . . . . . . . . . . 11 (𝑎 = 𝑚 → ([,]‘𝑎) = ([,]‘𝑚))
3231sseq2d 4041 . . . . . . . . . 10 (𝑎 = 𝑚 → (([,]‘𝑡) ⊆ ([,]‘𝑎) ↔ ([,]‘𝑡) ⊆ ([,]‘𝑚)))
3332elrab 3708 . . . . . . . . 9 (𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ↔ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)))
34 simprlr 779 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → ([,]‘𝑡) ⊆ ([,]‘𝑚))
35 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑎 ∈ ([,]‘𝑡))
3634, 35sseldd 4009 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑎 ∈ ([,]‘𝑚))
37 simprll 778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑚𝐴)
38 fveq2 6920 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑤 → ([,]‘𝑎) = ([,]‘𝑤))
3938sseq2d 4041 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑤 → (([,]‘𝑡) ⊆ ([,]‘𝑎) ↔ ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4039elrab 3708 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ↔ (𝑤𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4140imbi1i 349 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) ↔ ((𝑤𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑤)) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
42 impexp 450 . . . . . . . . . . . . . . . . 17 (((𝑤𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑤)) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) ↔ (𝑤𝐴 → (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
4341, 42bitri 275 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) ↔ (𝑤𝐴 → (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
44 impexp 450 . . . . . . . . . . . . . . . . . 18 (((([,]‘𝑡) ⊆ ([,]‘𝑤) ∧ ([,]‘𝑚) ⊆ ([,]‘𝑤)) → 𝑚 = 𝑤) ↔ (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
45 sstr2 4015 . . . . . . . . . . . . . . . . . . . . 21 (([,]‘𝑡) ⊆ ([,]‘𝑚) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4645ad2antll 728 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4746ancrd 551 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → (([,]‘𝑡) ⊆ ([,]‘𝑤) ∧ ([,]‘𝑚) ⊆ ([,]‘𝑤))))
4847imim1d 82 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (((([,]‘𝑡) ⊆ ([,]‘𝑤) ∧ ([,]‘𝑚) ⊆ ([,]‘𝑤)) → 𝑚 = 𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
4944, 48biimtrrid 243 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → ((([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
5049imim2d 57 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → ((𝑤𝐴 → (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → (𝑤𝐴 → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
5143, 50biimtrid 242 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → ((𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) → (𝑤𝐴 → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
5251ralimdv2 3169 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
5352impr 454 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))
54 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑚 → ([,]‘𝑧) = ([,]‘𝑚))
5554sseq1d 4040 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑚 → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘𝑚) ⊆ ([,]‘𝑤)))
56 equequ1 2024 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑚 → (𝑧 = 𝑤𝑚 = 𝑤))
5755, 56imbi12d 344 . . . . . . . . . . . . . . 15 (𝑧 = 𝑚 → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
5857ralbidv 3184 . . . . . . . . . . . . . 14 (𝑧 = 𝑚 → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
59 dyadmbl.2 . . . . . . . . . . . . . 14 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
6058, 59elrab2 3711 . . . . . . . . . . . . 13 (𝑚𝐺 ↔ (𝑚𝐴 ∧ ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
6137, 53, 60sylanbrc 582 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑚𝐺)
62 ffun 6750 . . . . . . . . . . . . . 14 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
632, 62ax-mp 5 . . . . . . . . . . . . 13 Fun [,]
6459ssrab3 4105 . . . . . . . . . . . . . . . 16 𝐺𝐴
6564, 14sstrid 4020 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (ℝ* × ℝ*))
662fdmi 6758 . . . . . . . . . . . . . . 15 dom [,] = (ℝ* × ℝ*)
6765, 66sseqtrrdi 4060 . . . . . . . . . . . . . 14 (𝜑𝐺 ⊆ dom [,])
6867ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝐺 ⊆ dom [,])
69 funfvima2 7268 . . . . . . . . . . . . 13 ((Fun [,] ∧ 𝐺 ⊆ dom [,]) → (𝑚𝐺 → ([,]‘𝑚) ∈ ([,] “ 𝐺)))
7063, 68, 69sylancr 586 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → (𝑚𝐺 → ([,]‘𝑚) ∈ ([,] “ 𝐺)))
7161, 70mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → ([,]‘𝑚) ∈ ([,] “ 𝐺))
72 elunii 4936 . . . . . . . . . . 11 ((𝑎 ∈ ([,]‘𝑚) ∧ ([,]‘𝑚) ∈ ([,] “ 𝐺)) → 𝑎 ([,] “ 𝐺))
7336, 71, 72syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑎 ([,] “ 𝐺))
7473exp32 420 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) → (∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → 𝑎 ([,] “ 𝐺))))
7533, 74biimtrid 242 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → (𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → 𝑎 ([,] “ 𝐺))))
7675rexlimdv 3159 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → (∃𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)}∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → 𝑎 ([,] “ 𝐺)))
7730, 76mpd 15 . . . . . 6 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → 𝑎 ([,] “ 𝐺))
7877rexlimdvaa 3162 . . . . 5 (𝜑 → (∃𝑡𝐴 𝑎 ∈ ([,]‘𝑡) → 𝑎 ([,] “ 𝐺)))
7917, 78sylbid 240 . . . 4 (𝜑 → (∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖𝑎 ([,] “ 𝐺)))
801, 79biimtrid 242 . . 3 (𝜑 → (𝑎 ([,] “ 𝐴) → 𝑎 ([,] “ 𝐺)))
8180ssrdv 4014 . 2 (𝜑 ([,] “ 𝐴) ⊆ ([,] “ 𝐺))
82 imass2 6132 . . . 4 (𝐺𝐴 → ([,] “ 𝐺) ⊆ ([,] “ 𝐴))
8364, 82ax-mp 5 . . 3 ([,] “ 𝐺) ⊆ ([,] “ 𝐴)
84 uniss 4939 . . 3 (([,] “ 𝐺) ⊆ ([,] “ 𝐴) → ([,] “ 𝐺) ⊆ ([,] “ 𝐴))
8583, 84mp1i 13 . 2 (𝜑 ([,] “ 𝐺) ⊆ ([,] “ 𝐴))
8681, 85eqssd 4026 1 (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  cop 4654   cuni 4931   × cxp 5698  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  cr 11183  1c1 11185   + caddc 11187  *cxr 11323  cle 11325   / cdiv 11947  2c2 12348  0cn0 12553  cz 12639  [,]cicc 13410  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518
This theorem is referenced by:  dyadmbl  25654  mblfinlem1  37617  mblfinlem2  37618
  Copyright terms: Public domain W3C validator