MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbllem Structured version   Visualization version   GIF version

Theorem dyadmbllem 25500
Description: Lemma for dyadmbl 25501. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmbl.2 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
dyadmbl.3 (𝜑𝐴 ⊆ ran 𝐹)
Assertion
Ref Expression
dyadmbllem (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑧,𝐺   𝑤,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem dyadmbllem
Dummy variables 𝑎 𝑚 𝑡 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4875 . . . 4 (𝑎 ([,] “ 𝐴) ↔ ∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖)
2 iccf 13409 . . . . . . 7 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
3 ffn 6688 . . . . . . 7 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . . . 6 [,] Fn (ℝ* × ℝ*)
5 dyadmbl.3 . . . . . . 7 (𝜑𝐴 ⊆ ran 𝐹)
6 dyadmbl.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
76dyadf 25492 . . . . . . . . 9 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
8 frn 6695 . . . . . . . . 9 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
97, 8ax-mp 5 . . . . . . . 8 ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ))
10 inss2 4201 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
11 rexpssxrxp 11219 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
1210, 11sstri 3956 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
139, 12sstri 3956 . . . . . . 7 ran 𝐹 ⊆ (ℝ* × ℝ*)
145, 13sstrdi 3959 . . . . . 6 (𝜑𝐴 ⊆ (ℝ* × ℝ*))
15 eleq2 2817 . . . . . . 7 (𝑖 = ([,]‘𝑡) → (𝑎𝑖𝑎 ∈ ([,]‘𝑡)))
1615rexima 7212 . . . . . 6 (([,] Fn (ℝ* × ℝ*) ∧ 𝐴 ⊆ (ℝ* × ℝ*)) → (∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖 ↔ ∃𝑡𝐴 𝑎 ∈ ([,]‘𝑡)))
174, 14, 16sylancr 587 . . . . 5 (𝜑 → (∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖 ↔ ∃𝑡𝐴 𝑎 ∈ ([,]‘𝑡)))
18 ssrab2 4043 . . . . . . . . 9 {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ⊆ 𝐴
195adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → 𝐴 ⊆ ran 𝐹)
2018, 19sstrid 3958 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ⊆ ran 𝐹)
21 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → 𝑡𝐴)
22 ssid 3969 . . . . . . . . . 10 ([,]‘𝑡) ⊆ ([,]‘𝑡)
23 fveq2 6858 . . . . . . . . . . . 12 (𝑎 = 𝑡 → ([,]‘𝑎) = ([,]‘𝑡))
2423sseq2d 3979 . . . . . . . . . . 11 (𝑎 = 𝑡 → (([,]‘𝑡) ⊆ ([,]‘𝑎) ↔ ([,]‘𝑡) ⊆ ([,]‘𝑡)))
2524rspcev 3588 . . . . . . . . . 10 ((𝑡𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑡)) → ∃𝑎𝐴 ([,]‘𝑡) ⊆ ([,]‘𝑎))
2621, 22, 25sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → ∃𝑎𝐴 ([,]‘𝑡) ⊆ ([,]‘𝑎))
27 rabn0 4352 . . . . . . . . 9 ({𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ≠ ∅ ↔ ∃𝑎𝐴 ([,]‘𝑡) ⊆ ([,]‘𝑎))
2826, 27sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ≠ ∅)
296dyadmax 25499 . . . . . . . 8 (({𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ⊆ ran 𝐹 ∧ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ≠ ∅) → ∃𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)}∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))
3020, 28, 29syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → ∃𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)}∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))
31 fveq2 6858 . . . . . . . . . . 11 (𝑎 = 𝑚 → ([,]‘𝑎) = ([,]‘𝑚))
3231sseq2d 3979 . . . . . . . . . 10 (𝑎 = 𝑚 → (([,]‘𝑡) ⊆ ([,]‘𝑎) ↔ ([,]‘𝑡) ⊆ ([,]‘𝑚)))
3332elrab 3659 . . . . . . . . 9 (𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ↔ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)))
34 simprlr 779 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → ([,]‘𝑡) ⊆ ([,]‘𝑚))
35 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑎 ∈ ([,]‘𝑡))
3634, 35sseldd 3947 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑎 ∈ ([,]‘𝑚))
37 simprll 778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑚𝐴)
38 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑤 → ([,]‘𝑎) = ([,]‘𝑤))
3938sseq2d 3979 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑤 → (([,]‘𝑡) ⊆ ([,]‘𝑎) ↔ ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4039elrab 3659 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ↔ (𝑤𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4140imbi1i 349 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) ↔ ((𝑤𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑤)) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
42 impexp 450 . . . . . . . . . . . . . . . . 17 (((𝑤𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑤)) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) ↔ (𝑤𝐴 → (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
4341, 42bitri 275 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) ↔ (𝑤𝐴 → (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
44 impexp 450 . . . . . . . . . . . . . . . . . 18 (((([,]‘𝑡) ⊆ ([,]‘𝑤) ∧ ([,]‘𝑚) ⊆ ([,]‘𝑤)) → 𝑚 = 𝑤) ↔ (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
45 sstr2 3953 . . . . . . . . . . . . . . . . . . . . 21 (([,]‘𝑡) ⊆ ([,]‘𝑚) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4645ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4746ancrd 551 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → (([,]‘𝑡) ⊆ ([,]‘𝑤) ∧ ([,]‘𝑚) ⊆ ([,]‘𝑤))))
4847imim1d 82 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (((([,]‘𝑡) ⊆ ([,]‘𝑤) ∧ ([,]‘𝑚) ⊆ ([,]‘𝑤)) → 𝑚 = 𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
4944, 48biimtrrid 243 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → ((([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
5049imim2d 57 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → ((𝑤𝐴 → (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → (𝑤𝐴 → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
5143, 50biimtrid 242 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → ((𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) → (𝑤𝐴 → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
5251ralimdv2 3142 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
5352impr 454 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))
54 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑚 → ([,]‘𝑧) = ([,]‘𝑚))
5554sseq1d 3978 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑚 → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘𝑚) ⊆ ([,]‘𝑤)))
56 equequ1 2025 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑚 → (𝑧 = 𝑤𝑚 = 𝑤))
5755, 56imbi12d 344 . . . . . . . . . . . . . . 15 (𝑧 = 𝑚 → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
5857ralbidv 3156 . . . . . . . . . . . . . 14 (𝑧 = 𝑚 → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
59 dyadmbl.2 . . . . . . . . . . . . . 14 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
6058, 59elrab2 3662 . . . . . . . . . . . . 13 (𝑚𝐺 ↔ (𝑚𝐴 ∧ ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
6137, 53, 60sylanbrc 583 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑚𝐺)
62 ffun 6691 . . . . . . . . . . . . . 14 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
632, 62ax-mp 5 . . . . . . . . . . . . 13 Fun [,]
6459ssrab3 4045 . . . . . . . . . . . . . . . 16 𝐺𝐴
6564, 14sstrid 3958 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (ℝ* × ℝ*))
662fdmi 6699 . . . . . . . . . . . . . . 15 dom [,] = (ℝ* × ℝ*)
6765, 66sseqtrrdi 3988 . . . . . . . . . . . . . 14 (𝜑𝐺 ⊆ dom [,])
6867ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝐺 ⊆ dom [,])
69 funfvima2 7205 . . . . . . . . . . . . 13 ((Fun [,] ∧ 𝐺 ⊆ dom [,]) → (𝑚𝐺 → ([,]‘𝑚) ∈ ([,] “ 𝐺)))
7063, 68, 69sylancr 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → (𝑚𝐺 → ([,]‘𝑚) ∈ ([,] “ 𝐺)))
7161, 70mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → ([,]‘𝑚) ∈ ([,] “ 𝐺))
72 elunii 4876 . . . . . . . . . . 11 ((𝑎 ∈ ([,]‘𝑚) ∧ ([,]‘𝑚) ∈ ([,] “ 𝐺)) → 𝑎 ([,] “ 𝐺))
7336, 71, 72syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑎 ([,] “ 𝐺))
7473exp32 420 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) → (∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → 𝑎 ([,] “ 𝐺))))
7533, 74biimtrid 242 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → (𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → 𝑎 ([,] “ 𝐺))))
7675rexlimdv 3132 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → (∃𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)}∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → 𝑎 ([,] “ 𝐺)))
7730, 76mpd 15 . . . . . 6 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → 𝑎 ([,] “ 𝐺))
7877rexlimdvaa 3135 . . . . 5 (𝜑 → (∃𝑡𝐴 𝑎 ∈ ([,]‘𝑡) → 𝑎 ([,] “ 𝐺)))
7917, 78sylbid 240 . . . 4 (𝜑 → (∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖𝑎 ([,] “ 𝐺)))
801, 79biimtrid 242 . . 3 (𝜑 → (𝑎 ([,] “ 𝐴) → 𝑎 ([,] “ 𝐺)))
8180ssrdv 3952 . 2 (𝜑 ([,] “ 𝐴) ⊆ ([,] “ 𝐺))
82 imass2 6073 . . . 4 (𝐺𝐴 → ([,] “ 𝐺) ⊆ ([,] “ 𝐴))
8364, 82ax-mp 5 . . 3 ([,] “ 𝐺) ⊆ ([,] “ 𝐴)
84 uniss 4879 . . 3 (([,] “ 𝐺) ⊆ ([,] “ 𝐴) → ([,] “ 𝐺) ⊆ ([,] “ 𝐴))
8583, 84mp1i 13 . 2 (𝜑 ([,] “ 𝐺) ⊆ ([,] “ 𝐴))
8681, 85eqssd 3964 1 (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  cop 4595   cuni 4871   × cxp 5636  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  cr 11067  1c1 11069   + caddc 11071  *cxr 11207  cle 11209   / cdiv 11835  2c2 12241  0cn0 12442  cz 12529  [,]cicc 13309  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365
This theorem is referenced by:  dyadmbl  25501  mblfinlem1  37651  mblfinlem2  37652
  Copyright terms: Public domain W3C validator