MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmbllem Structured version   Visualization version   GIF version

Theorem dyadmbllem 25476
Description: Lemma for dyadmbl 25477. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
dyadmbl.2 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
dyadmbl.3 (𝜑𝐴 ⊆ ran 𝐹)
Assertion
Ref Expression
dyadmbllem (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝜑   𝑥,𝑤,𝑦,𝐴,𝑧   𝑧,𝐺   𝑤,𝐹,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem dyadmbllem
Dummy variables 𝑎 𝑚 𝑡 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4871 . . . 4 (𝑎 ([,] “ 𝐴) ↔ ∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖)
2 iccf 13385 . . . . . . 7 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
3 ffn 6670 . . . . . . 7 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . . . 6 [,] Fn (ℝ* × ℝ*)
5 dyadmbl.3 . . . . . . 7 (𝜑𝐴 ⊆ ran 𝐹)
6 dyadmbl.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
76dyadf 25468 . . . . . . . . 9 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
8 frn 6677 . . . . . . . . 9 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
97, 8ax-mp 5 . . . . . . . 8 ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ))
10 inss2 4197 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
11 rexpssxrxp 11195 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
1210, 11sstri 3953 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
139, 12sstri 3953 . . . . . . 7 ran 𝐹 ⊆ (ℝ* × ℝ*)
145, 13sstrdi 3956 . . . . . 6 (𝜑𝐴 ⊆ (ℝ* × ℝ*))
15 eleq2 2817 . . . . . . 7 (𝑖 = ([,]‘𝑡) → (𝑎𝑖𝑎 ∈ ([,]‘𝑡)))
1615rexima 7194 . . . . . 6 (([,] Fn (ℝ* × ℝ*) ∧ 𝐴 ⊆ (ℝ* × ℝ*)) → (∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖 ↔ ∃𝑡𝐴 𝑎 ∈ ([,]‘𝑡)))
174, 14, 16sylancr 587 . . . . 5 (𝜑 → (∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖 ↔ ∃𝑡𝐴 𝑎 ∈ ([,]‘𝑡)))
18 ssrab2 4039 . . . . . . . . 9 {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ⊆ 𝐴
195adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → 𝐴 ⊆ ran 𝐹)
2018, 19sstrid 3955 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ⊆ ran 𝐹)
21 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → 𝑡𝐴)
22 ssid 3966 . . . . . . . . . 10 ([,]‘𝑡) ⊆ ([,]‘𝑡)
23 fveq2 6840 . . . . . . . . . . . 12 (𝑎 = 𝑡 → ([,]‘𝑎) = ([,]‘𝑡))
2423sseq2d 3976 . . . . . . . . . . 11 (𝑎 = 𝑡 → (([,]‘𝑡) ⊆ ([,]‘𝑎) ↔ ([,]‘𝑡) ⊆ ([,]‘𝑡)))
2524rspcev 3585 . . . . . . . . . 10 ((𝑡𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑡)) → ∃𝑎𝐴 ([,]‘𝑡) ⊆ ([,]‘𝑎))
2621, 22, 25sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → ∃𝑎𝐴 ([,]‘𝑡) ⊆ ([,]‘𝑎))
27 rabn0 4348 . . . . . . . . 9 ({𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ≠ ∅ ↔ ∃𝑎𝐴 ([,]‘𝑡) ⊆ ([,]‘𝑎))
2826, 27sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ≠ ∅)
296dyadmax 25475 . . . . . . . 8 (({𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ⊆ ran 𝐹 ∧ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ≠ ∅) → ∃𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)}∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))
3020, 28, 29syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → ∃𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)}∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))
31 fveq2 6840 . . . . . . . . . . 11 (𝑎 = 𝑚 → ([,]‘𝑎) = ([,]‘𝑚))
3231sseq2d 3976 . . . . . . . . . 10 (𝑎 = 𝑚 → (([,]‘𝑡) ⊆ ([,]‘𝑎) ↔ ([,]‘𝑡) ⊆ ([,]‘𝑚)))
3332elrab 3656 . . . . . . . . 9 (𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ↔ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)))
34 simprlr 779 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → ([,]‘𝑡) ⊆ ([,]‘𝑚))
35 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑎 ∈ ([,]‘𝑡))
3634, 35sseldd 3944 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑎 ∈ ([,]‘𝑚))
37 simprll 778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑚𝐴)
38 fveq2 6840 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑤 → ([,]‘𝑎) = ([,]‘𝑤))
3938sseq2d 3976 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑤 → (([,]‘𝑡) ⊆ ([,]‘𝑎) ↔ ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4039elrab 3656 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} ↔ (𝑤𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4140imbi1i 349 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) ↔ ((𝑤𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑤)) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
42 impexp 450 . . . . . . . . . . . . . . . . 17 (((𝑤𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑤)) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) ↔ (𝑤𝐴 → (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
4341, 42bitri 275 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) ↔ (𝑤𝐴 → (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
44 impexp 450 . . . . . . . . . . . . . . . . . 18 (((([,]‘𝑡) ⊆ ([,]‘𝑤) ∧ ([,]‘𝑚) ⊆ ([,]‘𝑤)) → 𝑚 = 𝑤) ↔ (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
45 sstr2 3950 . . . . . . . . . . . . . . . . . . . . 21 (([,]‘𝑡) ⊆ ([,]‘𝑚) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4645ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → ([,]‘𝑡) ⊆ ([,]‘𝑤)))
4746ancrd 551 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → (([,]‘𝑡) ⊆ ([,]‘𝑤) ∧ ([,]‘𝑚) ⊆ ([,]‘𝑤))))
4847imim1d 82 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (((([,]‘𝑡) ⊆ ([,]‘𝑤) ∧ ([,]‘𝑚) ⊆ ([,]‘𝑤)) → 𝑚 = 𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
4944, 48biimtrrid 243 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → ((([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
5049imim2d 57 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → ((𝑤𝐴 → (([,]‘𝑡) ⊆ ([,]‘𝑤) → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → (𝑤𝐴 → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
5143, 50biimtrid 242 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → ((𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)) → (𝑤𝐴 → (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))))
5251ralimdv2 3142 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ (𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚))) → (∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
5352impr 454 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))
54 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑚 → ([,]‘𝑧) = ([,]‘𝑚))
5554sseq1d 3975 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑚 → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘𝑚) ⊆ ([,]‘𝑤)))
56 equequ1 2025 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑚 → (𝑧 = 𝑤𝑚 = 𝑤))
5755, 56imbi12d 344 . . . . . . . . . . . . . . 15 (𝑧 = 𝑚 → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
5857ralbidv 3156 . . . . . . . . . . . . . 14 (𝑧 = 𝑚 → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
59 dyadmbl.2 . . . . . . . . . . . . . 14 𝐺 = {𝑧𝐴 ∣ ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)}
6058, 59elrab2 3659 . . . . . . . . . . . . 13 (𝑚𝐺 ↔ (𝑚𝐴 ∧ ∀𝑤𝐴 (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤)))
6137, 53, 60sylanbrc 583 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑚𝐺)
62 ffun 6673 . . . . . . . . . . . . . 14 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
632, 62ax-mp 5 . . . . . . . . . . . . 13 Fun [,]
6459ssrab3 4041 . . . . . . . . . . . . . . . 16 𝐺𝐴
6564, 14sstrid 3955 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (ℝ* × ℝ*))
662fdmi 6681 . . . . . . . . . . . . . . 15 dom [,] = (ℝ* × ℝ*)
6765, 66sseqtrrdi 3985 . . . . . . . . . . . . . 14 (𝜑𝐺 ⊆ dom [,])
6867ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝐺 ⊆ dom [,])
69 funfvima2 7187 . . . . . . . . . . . . 13 ((Fun [,] ∧ 𝐺 ⊆ dom [,]) → (𝑚𝐺 → ([,]‘𝑚) ∈ ([,] “ 𝐺)))
7063, 68, 69sylancr 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → (𝑚𝐺 → ([,]‘𝑚) ∈ ([,] “ 𝐺)))
7161, 70mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → ([,]‘𝑚) ∈ ([,] “ 𝐺))
72 elunii 4872 . . . . . . . . . . 11 ((𝑎 ∈ ([,]‘𝑚) ∧ ([,]‘𝑚) ∈ ([,] “ 𝐺)) → 𝑎 ([,] “ 𝐺))
7336, 71, 72syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) ∧ ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) ∧ ∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤))) → 𝑎 ([,] “ 𝐺))
7473exp32 420 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → ((𝑚𝐴 ∧ ([,]‘𝑡) ⊆ ([,]‘𝑚)) → (∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → 𝑎 ([,] “ 𝐺))))
7533, 74biimtrid 242 . . . . . . . 8 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → (𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} → (∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → 𝑎 ([,] “ 𝐺))))
7675rexlimdv 3132 . . . . . . 7 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → (∃𝑚 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)}∀𝑤 ∈ {𝑎𝐴 ∣ ([,]‘𝑡) ⊆ ([,]‘𝑎)} (([,]‘𝑚) ⊆ ([,]‘𝑤) → 𝑚 = 𝑤) → 𝑎 ([,] “ 𝐺)))
7730, 76mpd 15 . . . . . 6 ((𝜑 ∧ (𝑡𝐴𝑎 ∈ ([,]‘𝑡))) → 𝑎 ([,] “ 𝐺))
7877rexlimdvaa 3135 . . . . 5 (𝜑 → (∃𝑡𝐴 𝑎 ∈ ([,]‘𝑡) → 𝑎 ([,] “ 𝐺)))
7917, 78sylbid 240 . . . 4 (𝜑 → (∃𝑖 ∈ ([,] “ 𝐴)𝑎𝑖𝑎 ([,] “ 𝐺)))
801, 79biimtrid 242 . . 3 (𝜑 → (𝑎 ([,] “ 𝐴) → 𝑎 ([,] “ 𝐺)))
8180ssrdv 3949 . 2 (𝜑 ([,] “ 𝐴) ⊆ ([,] “ 𝐺))
82 imass2 6062 . . . 4 (𝐺𝐴 → ([,] “ 𝐺) ⊆ ([,] “ 𝐴))
8364, 82ax-mp 5 . . 3 ([,] “ 𝐺) ⊆ ([,] “ 𝐴)
84 uniss 4875 . . 3 (([,] “ 𝐺) ⊆ ([,] “ 𝐴) → ([,] “ 𝐺) ⊆ ([,] “ 𝐴))
8583, 84mp1i 13 . 2 (𝜑 ([,] “ 𝐺) ⊆ ([,] “ 𝐴))
8681, 85eqssd 3961 1 (𝜑 ([,] “ 𝐴) = ([,] “ 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  cop 4591   cuni 4867   × cxp 5629  dom cdm 5631  ran crn 5632  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  cr 11043  1c1 11045   + caddc 11047  *cxr 11183  cle 11185   / cdiv 11811  2c2 12217  0cn0 12418  cz 12505  [,]cicc 13285  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-rest 17361  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-bases 22809  df-cmp 23250  df-ovol 25341
This theorem is referenced by:  dyadmbl  25477  mblfinlem1  37624  mblfinlem2  37625
  Copyright terms: Public domain W3C validator