MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuzre Structured version   Visualization version   GIF version

Theorem rexuzre 14704
Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
rexuzre (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑)))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem rexuzre
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eluzelre 12242 . . . . . 6 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
2 rexuz3.1 . . . . . 6 𝑍 = (ℤ𝑀)
31, 2eleq2s 2908 . . . . 5 (𝑗𝑍𝑗 ∈ ℝ)
43adantr 484 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → 𝑗 ∈ ℝ)
5 eluzelz 12241 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
65, 2eleq2s 2908 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ ℤ)
7 eluzelz 12241 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
87, 2eleq2s 2908 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ ℤ)
9 eluz 12245 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
106, 8, 9syl2an 598 . . . . . . . . . 10 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
1110biimprd 251 . . . . . . . . 9 ((𝑗𝑍𝑘𝑍) → (𝑗𝑘𝑘 ∈ (ℤ𝑗)))
1211expimpd 457 . . . . . . . 8 (𝑗𝑍 → ((𝑘𝑍𝑗𝑘) → 𝑘 ∈ (ℤ𝑗)))
1312imim1d 82 . . . . . . 7 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → 𝜑) → ((𝑘𝑍𝑗𝑘) → 𝜑)))
1413exp4a 435 . . . . . 6 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → 𝜑) → (𝑘𝑍 → (𝑗𝑘𝜑))))
1514ralimdv2 3143 . . . . 5 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑 → ∀𝑘𝑍 (𝑗𝑘𝜑)))
1615imp 410 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∀𝑘𝑍 (𝑗𝑘𝜑))
174, 16jca 515 . . 3 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (𝑗 ∈ ℝ ∧ ∀𝑘𝑍 (𝑗𝑘𝜑)))
1817reximi2 3207 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑))
19 simpl 486 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑀 ∈ ℤ)
20 flcl 13160 . . . . . . . . . 10 (𝑗 ∈ ℝ → (⌊‘𝑗) ∈ ℤ)
2120adantl 485 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (⌊‘𝑗) ∈ ℤ)
2221peano2zd 12078 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ∈ ℤ)
2322, 19ifcld 4470 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ)
24 zre 11973 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
25 reflcl 13161 . . . . . . . . 9 (𝑗 ∈ ℝ → (⌊‘𝑗) ∈ ℝ)
26 peano2re 10802 . . . . . . . . 9 ((⌊‘𝑗) ∈ ℝ → ((⌊‘𝑗) + 1) ∈ ℝ)
2725, 26syl 17 . . . . . . . 8 (𝑗 ∈ ℝ → ((⌊‘𝑗) + 1) ∈ ℝ)
28 max1 12566 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑗) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
2924, 27, 28syl2an 598 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
30 eluz2 12237 . . . . . . 7 (if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)))
3119, 23, 29, 30syl3anbrc 1340 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀))
3231, 2eleqtrrdi 2901 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ 𝑍)
33 impexp 454 . . . . . . 7 (((𝑘𝑍𝑗𝑘) → 𝜑) ↔ (𝑘𝑍 → (𝑗𝑘𝜑)))
34 uzss 12253 . . . . . . . . . . . . 13 (if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ (ℤ𝑀))
3531, 34syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ (ℤ𝑀))
3635, 2sseqtrrdi 3966 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ 𝑍)
3736sselda 3915 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑘𝑍)
38 simplr 768 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗 ∈ ℝ)
3923adantr 484 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ)
4039zred 12075 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℝ)
41 eluzelre 12242 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝑘 ∈ ℝ)
4241adantl 485 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑘 ∈ ℝ)
43 simpr 488 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ∈ ℝ)
4427adantl 485 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ∈ ℝ)
4523zred 12075 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℝ)
46 fllep1 13166 . . . . . . . . . . . . . 14 (𝑗 ∈ ℝ → 𝑗 ≤ ((⌊‘𝑗) + 1))
4746adantl 485 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ ((⌊‘𝑗) + 1))
48 max2 12568 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑗) + 1) ∈ ℝ) → ((⌊‘𝑗) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
4924, 27, 48syl2an 598 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
5043, 44, 45, 47, 49letrd 10786 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
5150adantr 484 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
52 eluzle 12244 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ≤ 𝑘)
5352adantl 485 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ≤ 𝑘)
5438, 40, 42, 51, 53letrd 10786 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗𝑘)
5537, 54jca 515 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → (𝑘𝑍𝑗𝑘))
5655ex 416 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → (𝑘𝑍𝑗𝑘)))
5756imim1d 82 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (((𝑘𝑍𝑗𝑘) → 𝜑) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝜑)))
5833, 57syl5bir 246 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((𝑘𝑍 → (𝑗𝑘𝜑)) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝜑)))
5958ralimdv2 3143 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (∀𝑘𝑍 (𝑗𝑘𝜑) → ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑))
60 fveq2 6645 . . . . . . 7 (𝑚 = if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) → (ℤ𝑚) = (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)))
6160raleqdv 3364 . . . . . 6 (𝑚 = if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) → (∀𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑))
6261rspcev 3571 . . . . 5 ((if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑)
6332, 59, 62syl6an 683 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑))
6463rexlimdva 3243 . . 3 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑))
65 fveq2 6645 . . . . 5 (𝑚 = 𝑗 → (ℤ𝑚) = (ℤ𝑗))
6665raleqdv 3364 . . . 4 (𝑚 = 𝑗 → (∀𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜑))
6766cbvrexvw 3397 . . 3 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑)
6864, 67syl6ib 254 . 2 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑))
6918, 68impbid2 229 1 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  wss 3881  ifcif 4425   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  1c1 10527   + caddc 10529  cle 10665  cz 11969  cuz 12231  cfl 13155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fl 13157
This theorem is referenced by:  limsupubuz2  42455
  Copyright terms: Public domain W3C validator