MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuzre Structured version   Visualization version   GIF version

Theorem rexuzre 15299
Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
rexuzre (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑)))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem rexuzre
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eluzelre 12833 . . . . . 6 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
2 rexuz3.1 . . . . . 6 𝑍 = (ℤ𝑀)
31, 2eleq2s 2852 . . . . 5 (𝑗𝑍𝑗 ∈ ℝ)
43adantr 482 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → 𝑗 ∈ ℝ)
5 eluzelz 12832 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
65, 2eleq2s 2852 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ ℤ)
7 eluzelz 12832 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
87, 2eleq2s 2852 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ ℤ)
9 eluz 12836 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
106, 8, 9syl2an 597 . . . . . . . . . 10 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
1110biimprd 247 . . . . . . . . 9 ((𝑗𝑍𝑘𝑍) → (𝑗𝑘𝑘 ∈ (ℤ𝑗)))
1211expimpd 455 . . . . . . . 8 (𝑗𝑍 → ((𝑘𝑍𝑗𝑘) → 𝑘 ∈ (ℤ𝑗)))
1312imim1d 82 . . . . . . 7 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → 𝜑) → ((𝑘𝑍𝑗𝑘) → 𝜑)))
1413exp4a 433 . . . . . 6 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → 𝜑) → (𝑘𝑍 → (𝑗𝑘𝜑))))
1514ralimdv2 3164 . . . . 5 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑 → ∀𝑘𝑍 (𝑗𝑘𝜑)))
1615imp 408 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∀𝑘𝑍 (𝑗𝑘𝜑))
174, 16jca 513 . . 3 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (𝑗 ∈ ℝ ∧ ∀𝑘𝑍 (𝑗𝑘𝜑)))
1817reximi2 3080 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑))
19 simpl 484 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑀 ∈ ℤ)
20 flcl 13760 . . . . . . . . . 10 (𝑗 ∈ ℝ → (⌊‘𝑗) ∈ ℤ)
2120adantl 483 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (⌊‘𝑗) ∈ ℤ)
2221peano2zd 12669 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ∈ ℤ)
2322, 19ifcld 4575 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ)
24 zre 12562 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
25 reflcl 13761 . . . . . . . . 9 (𝑗 ∈ ℝ → (⌊‘𝑗) ∈ ℝ)
26 peano2re 11387 . . . . . . . . 9 ((⌊‘𝑗) ∈ ℝ → ((⌊‘𝑗) + 1) ∈ ℝ)
2725, 26syl 17 . . . . . . . 8 (𝑗 ∈ ℝ → ((⌊‘𝑗) + 1) ∈ ℝ)
28 max1 13164 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑗) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
2924, 27, 28syl2an 597 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
30 eluz2 12828 . . . . . . 7 (if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)))
3119, 23, 29, 30syl3anbrc 1344 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀))
3231, 2eleqtrrdi 2845 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ 𝑍)
33 impexp 452 . . . . . . 7 (((𝑘𝑍𝑗𝑘) → 𝜑) ↔ (𝑘𝑍 → (𝑗𝑘𝜑)))
34 uzss 12845 . . . . . . . . . . . . 13 (if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ (ℤ𝑀))
3531, 34syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ (ℤ𝑀))
3635, 2sseqtrrdi 4034 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ 𝑍)
3736sselda 3983 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑘𝑍)
38 simplr 768 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗 ∈ ℝ)
3923adantr 482 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ)
4039zred 12666 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℝ)
41 eluzelre 12833 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝑘 ∈ ℝ)
4241adantl 483 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑘 ∈ ℝ)
43 simpr 486 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ∈ ℝ)
4427adantl 483 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ∈ ℝ)
4523zred 12666 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℝ)
46 fllep1 13766 . . . . . . . . . . . . . 14 (𝑗 ∈ ℝ → 𝑗 ≤ ((⌊‘𝑗) + 1))
4746adantl 483 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ ((⌊‘𝑗) + 1))
48 max2 13166 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑗) + 1) ∈ ℝ) → ((⌊‘𝑗) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
4924, 27, 48syl2an 597 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
5043, 44, 45, 47, 49letrd 11371 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
5150adantr 482 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
52 eluzle 12835 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ≤ 𝑘)
5352adantl 483 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ≤ 𝑘)
5438, 40, 42, 51, 53letrd 11371 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗𝑘)
5537, 54jca 513 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → (𝑘𝑍𝑗𝑘))
5655ex 414 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → (𝑘𝑍𝑗𝑘)))
5756imim1d 82 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (((𝑘𝑍𝑗𝑘) → 𝜑) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝜑)))
5833, 57biimtrrid 242 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((𝑘𝑍 → (𝑗𝑘𝜑)) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝜑)))
5958ralimdv2 3164 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (∀𝑘𝑍 (𝑗𝑘𝜑) → ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑))
60 fveq2 6892 . . . . . . 7 (𝑚 = if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) → (ℤ𝑚) = (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)))
6160raleqdv 3326 . . . . . 6 (𝑚 = if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) → (∀𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑))
6261rspcev 3613 . . . . 5 ((if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑)
6332, 59, 62syl6an 683 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑))
6463rexlimdva 3156 . . 3 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑))
65 fveq2 6892 . . . . 5 (𝑚 = 𝑗 → (ℤ𝑚) = (ℤ𝑗))
6665raleqdv 3326 . . . 4 (𝑚 = 𝑗 → (∀𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜑))
6766cbvrexvw 3236 . . 3 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑)
6864, 67imbitrdi 250 . 2 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑))
6918, 68impbid2 225 1 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  wrex 3071  wss 3949  ifcif 4529   class class class wbr 5149  cfv 6544  (class class class)co 7409  cr 11109  1c1 11111   + caddc 11113  cle 11249  cz 12558  cuz 12822  cfl 13755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fl 13757
This theorem is referenced by:  limsupubuz2  44529
  Copyright terms: Public domain W3C validator