MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuzre Structured version   Visualization version   GIF version

Theorem rexuzre 15391
Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
rexuzre (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑)))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem rexuzre
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eluzelre 12889 . . . . . 6 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
2 rexuz3.1 . . . . . 6 𝑍 = (ℤ𝑀)
31, 2eleq2s 2859 . . . . 5 (𝑗𝑍𝑗 ∈ ℝ)
43adantr 480 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → 𝑗 ∈ ℝ)
5 eluzelz 12888 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
65, 2eleq2s 2859 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ ℤ)
7 eluzelz 12888 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
87, 2eleq2s 2859 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ ℤ)
9 eluz 12892 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
106, 8, 9syl2an 596 . . . . . . . . . 10 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
1110biimprd 248 . . . . . . . . 9 ((𝑗𝑍𝑘𝑍) → (𝑗𝑘𝑘 ∈ (ℤ𝑗)))
1211expimpd 453 . . . . . . . 8 (𝑗𝑍 → ((𝑘𝑍𝑗𝑘) → 𝑘 ∈ (ℤ𝑗)))
1312imim1d 82 . . . . . . 7 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → 𝜑) → ((𝑘𝑍𝑗𝑘) → 𝜑)))
1413exp4a 431 . . . . . 6 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → 𝜑) → (𝑘𝑍 → (𝑗𝑘𝜑))))
1514ralimdv2 3163 . . . . 5 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑 → ∀𝑘𝑍 (𝑗𝑘𝜑)))
1615imp 406 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∀𝑘𝑍 (𝑗𝑘𝜑))
174, 16jca 511 . . 3 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (𝑗 ∈ ℝ ∧ ∀𝑘𝑍 (𝑗𝑘𝜑)))
1817reximi2 3079 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑))
19 simpl 482 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑀 ∈ ℤ)
20 flcl 13835 . . . . . . . . . 10 (𝑗 ∈ ℝ → (⌊‘𝑗) ∈ ℤ)
2120adantl 481 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (⌊‘𝑗) ∈ ℤ)
2221peano2zd 12725 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ∈ ℤ)
2322, 19ifcld 4572 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ)
24 zre 12617 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
25 reflcl 13836 . . . . . . . . 9 (𝑗 ∈ ℝ → (⌊‘𝑗) ∈ ℝ)
26 peano2re 11434 . . . . . . . . 9 ((⌊‘𝑗) ∈ ℝ → ((⌊‘𝑗) + 1) ∈ ℝ)
2725, 26syl 17 . . . . . . . 8 (𝑗 ∈ ℝ → ((⌊‘𝑗) + 1) ∈ ℝ)
28 max1 13227 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑗) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
2924, 27, 28syl2an 596 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
30 eluz2 12884 . . . . . . 7 (if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)))
3119, 23, 29, 30syl3anbrc 1344 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀))
3231, 2eleqtrrdi 2852 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ 𝑍)
33 impexp 450 . . . . . . 7 (((𝑘𝑍𝑗𝑘) → 𝜑) ↔ (𝑘𝑍 → (𝑗𝑘𝜑)))
34 uzss 12901 . . . . . . . . . . . . 13 (if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ (ℤ𝑀))
3531, 34syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ (ℤ𝑀))
3635, 2sseqtrrdi 4025 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ 𝑍)
3736sselda 3983 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑘𝑍)
38 simplr 769 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗 ∈ ℝ)
3923adantr 480 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ)
4039zred 12722 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℝ)
41 eluzelre 12889 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝑘 ∈ ℝ)
4241adantl 481 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑘 ∈ ℝ)
43 simpr 484 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ∈ ℝ)
4427adantl 481 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ∈ ℝ)
4523zred 12722 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℝ)
46 fllep1 13841 . . . . . . . . . . . . . 14 (𝑗 ∈ ℝ → 𝑗 ≤ ((⌊‘𝑗) + 1))
4746adantl 481 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ ((⌊‘𝑗) + 1))
48 max2 13229 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑗) + 1) ∈ ℝ) → ((⌊‘𝑗) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
4924, 27, 48syl2an 596 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
5043, 44, 45, 47, 49letrd 11418 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
5150adantr 480 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
52 eluzle 12891 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ≤ 𝑘)
5352adantl 481 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ≤ 𝑘)
5438, 40, 42, 51, 53letrd 11418 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗𝑘)
5537, 54jca 511 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → (𝑘𝑍𝑗𝑘))
5655ex 412 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → (𝑘𝑍𝑗𝑘)))
5756imim1d 82 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (((𝑘𝑍𝑗𝑘) → 𝜑) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝜑)))
5833, 57biimtrrid 243 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((𝑘𝑍 → (𝑗𝑘𝜑)) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝜑)))
5958ralimdv2 3163 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (∀𝑘𝑍 (𝑗𝑘𝜑) → ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑))
60 fveq2 6906 . . . . . . 7 (𝑚 = if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) → (ℤ𝑚) = (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)))
6160raleqdv 3326 . . . . . 6 (𝑚 = if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) → (∀𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑))
6261rspcev 3622 . . . . 5 ((if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑)
6332, 59, 62syl6an 684 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑))
6463rexlimdva 3155 . . 3 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑))
65 fveq2 6906 . . . . 5 (𝑚 = 𝑗 → (ℤ𝑚) = (ℤ𝑗))
6665raleqdv 3326 . . . 4 (𝑚 = 𝑗 → (∀𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜑))
6766cbvrexvw 3238 . . 3 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑)
6864, 67imbitrdi 251 . 2 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑))
6918, 68impbid2 226 1 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951  ifcif 4525   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158  cle 11296  cz 12613  cuz 12878  cfl 13830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fl 13832
This theorem is referenced by:  limsupubuz2  45828
  Copyright terms: Public domain W3C validator