MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuzre Structured version   Visualization version   GIF version

Theorem rexuzre 15298
Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
rexuzre (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑)))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem rexuzre
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eluzelre 12832 . . . . . 6 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
2 rexuz3.1 . . . . . 6 𝑍 = (ℤ𝑀)
31, 2eleq2s 2851 . . . . 5 (𝑗𝑍𝑗 ∈ ℝ)
43adantr 481 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → 𝑗 ∈ ℝ)
5 eluzelz 12831 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
65, 2eleq2s 2851 . . . . . . . . . . 11 (𝑗𝑍𝑗 ∈ ℤ)
7 eluzelz 12831 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
87, 2eleq2s 2851 . . . . . . . . . . 11 (𝑘𝑍𝑘 ∈ ℤ)
9 eluz 12835 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
106, 8, 9syl2an 596 . . . . . . . . . 10 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
1110biimprd 247 . . . . . . . . 9 ((𝑗𝑍𝑘𝑍) → (𝑗𝑘𝑘 ∈ (ℤ𝑗)))
1211expimpd 454 . . . . . . . 8 (𝑗𝑍 → ((𝑘𝑍𝑗𝑘) → 𝑘 ∈ (ℤ𝑗)))
1312imim1d 82 . . . . . . 7 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → 𝜑) → ((𝑘𝑍𝑗𝑘) → 𝜑)))
1413exp4a 432 . . . . . 6 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → 𝜑) → (𝑘𝑍 → (𝑗𝑘𝜑))))
1514ralimdv2 3163 . . . . 5 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑 → ∀𝑘𝑍 (𝑗𝑘𝜑)))
1615imp 407 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ∀𝑘𝑍 (𝑗𝑘𝜑))
174, 16jca 512 . . 3 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (𝑗 ∈ ℝ ∧ ∀𝑘𝑍 (𝑗𝑘𝜑)))
1817reximi2 3079 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 → ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑))
19 simpl 483 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑀 ∈ ℤ)
20 flcl 13759 . . . . . . . . . 10 (𝑗 ∈ ℝ → (⌊‘𝑗) ∈ ℤ)
2120adantl 482 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (⌊‘𝑗) ∈ ℤ)
2221peano2zd 12668 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ∈ ℤ)
2322, 19ifcld 4574 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ)
24 zre 12561 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
25 reflcl 13760 . . . . . . . . 9 (𝑗 ∈ ℝ → (⌊‘𝑗) ∈ ℝ)
26 peano2re 11386 . . . . . . . . 9 ((⌊‘𝑗) ∈ ℝ → ((⌊‘𝑗) + 1) ∈ ℝ)
2725, 26syl 17 . . . . . . . 8 (𝑗 ∈ ℝ → ((⌊‘𝑗) + 1) ∈ ℝ)
28 max1 13163 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑗) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
2924, 27, 28syl2an 596 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
30 eluz2 12827 . . . . . . 7 (if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)))
3119, 23, 29, 30syl3anbrc 1343 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀))
3231, 2eleqtrrdi 2844 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ 𝑍)
33 impexp 451 . . . . . . 7 (((𝑘𝑍𝑗𝑘) → 𝜑) ↔ (𝑘𝑍 → (𝑗𝑘𝜑)))
34 uzss 12844 . . . . . . . . . . . . 13 (if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ (ℤ𝑀) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ (ℤ𝑀))
3531, 34syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ (ℤ𝑀))
3635, 2sseqtrrdi 4033 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) ⊆ 𝑍)
3736sselda 3982 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑘𝑍)
38 simplr 767 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗 ∈ ℝ)
3923adantr 481 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℤ)
4039zred 12665 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℝ)
41 eluzelre 12832 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝑘 ∈ ℝ)
4241adantl 482 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑘 ∈ ℝ)
43 simpr 485 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ∈ ℝ)
4427adantl 482 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ∈ ℝ)
4523zred 12665 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ ℝ)
46 fllep1 13765 . . . . . . . . . . . . . 14 (𝑗 ∈ ℝ → 𝑗 ≤ ((⌊‘𝑗) + 1))
4746adantl 482 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ ((⌊‘𝑗) + 1))
48 max2 13165 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑗) + 1) ∈ ℝ) → ((⌊‘𝑗) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
4924, 27, 48syl2an 596 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((⌊‘𝑗) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
5043, 44, 45, 47, 49letrd 11370 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
5150adantr 481 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗 ≤ if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))
52 eluzle 12834 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ≤ 𝑘)
5352adantl 482 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ≤ 𝑘)
5438, 40, 42, 51, 53letrd 11370 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → 𝑗𝑘)
5537, 54jca 512 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))) → (𝑘𝑍𝑗𝑘))
5655ex 413 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → (𝑘𝑍𝑗𝑘)))
5756imim1d 82 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (((𝑘𝑍𝑗𝑘) → 𝜑) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝜑)))
5833, 57biimtrrid 242 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → ((𝑘𝑍 → (𝑗𝑘𝜑)) → (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)) → 𝜑)))
5958ralimdv2 3163 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (∀𝑘𝑍 (𝑗𝑘𝜑) → ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑))
60 fveq2 6891 . . . . . . 7 (𝑚 = if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) → (ℤ𝑚) = (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀)))
6160raleqdv 3325 . . . . . 6 (𝑚 = if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) → (∀𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑))
6261rspcev 3612 . . . . 5 ((if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑗) + 1), ((⌊‘𝑗) + 1), 𝑀))𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑)
6332, 59, 62syl6an 682 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ) → (∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑))
6463rexlimdva 3155 . . 3 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑))
65 fveq2 6891 . . . . 5 (𝑚 = 𝑗 → (ℤ𝑚) = (ℤ𝑗))
6665raleqdv 3325 . . . 4 (𝑚 = 𝑗 → (∀𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜑))
6766cbvrexvw 3235 . . 3 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)𝜑 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑)
6864, 67imbitrdi 250 . 2 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑))
6918, 68impbid2 225 1 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℝ ∀𝑘𝑍 (𝑗𝑘𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  wss 3948  ifcif 4528   class class class wbr 5148  cfv 6543  (class class class)co 7408  cr 11108  1c1 11110   + caddc 11112  cle 11248  cz 12557  cuz 12821  cfl 13754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fl 13756
This theorem is referenced by:  limsupubuz2  44519
  Copyright terms: Public domain W3C validator