MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg Structured version   Visualization version   GIF version

Theorem caurcvg 14706
Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by NM, 4-Apr-2005.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvg.1 𝑍 = (ℤ𝑀)
caurcvg.3 (𝜑𝐹:𝑍⟶ℝ)
caurcvg.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
Assertion
Ref Expression
caurcvg (𝜑𝐹 ⇝ (lim sup‘𝐹))
Distinct variable groups:   𝑘,𝑚,𝑥,𝐹   𝑚,𝑀,𝑥   𝜑,𝑘,𝑚,𝑥   𝑘,𝑍,𝑚,𝑥
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem caurcvg
StepHypRef Expression
1 caurcvg.1 . . . . . 6 𝑍 = (ℤ𝑀)
2 uzssz 11911 . . . . . 6 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3797 . . . . 5 𝑍 ⊆ ℤ
4 zssre 11635 . . . . 5 ℤ ⊆ ℝ
53, 4sstri 3772 . . . 4 𝑍 ⊆ ℝ
65a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
7 caurcvg.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
8 1rp 12037 . . . . . 6 1 ∈ ℝ+
98ne0ii 4090 . . . . 5 + ≠ ∅
10 caurcvg.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
11 r19.2z 4221 . . . . 5 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
129, 10, 11sylancr 581 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
13 eluzel2 11896 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1413, 1eleq2s 2862 . . . . . . . 8 (𝑚𝑍𝑀 ∈ ℤ)
151uzsup 12875 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1614, 15syl 17 . . . . . . 7 (𝑚𝑍 → sup(𝑍, ℝ*, < ) = +∞)
1716a1d 25 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞))
1817rexlimiv 3174 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)
1918rexlimivw 3176 . . . 4 (∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)
2012, 19syl 17 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
213sseli 3759 . . . . . . . . . . . 12 (𝑚𝑍𝑚 ∈ ℤ)
223sseli 3759 . . . . . . . . . . . 12 (𝑘𝑍𝑘 ∈ ℤ)
23 eluz 11905 . . . . . . . . . . . 12 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑚) ↔ 𝑚𝑘))
2421, 22, 23syl2an 589 . . . . . . . . . . 11 ((𝑚𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑚) ↔ 𝑚𝑘))
2524biimprd 239 . . . . . . . . . 10 ((𝑚𝑍𝑘𝑍) → (𝑚𝑘𝑘 ∈ (ℤ𝑚)))
2625expimpd 445 . . . . . . . . 9 (𝑚𝑍 → ((𝑘𝑍𝑚𝑘) → 𝑘 ∈ (ℤ𝑚)))
2726imim1d 82 . . . . . . . 8 (𝑚𝑍 → ((𝑘 ∈ (ℤ𝑚) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ((𝑘𝑍𝑚𝑘) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2827exp4a 422 . . . . . . 7 (𝑚𝑍 → ((𝑘 ∈ (ℤ𝑚) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → (𝑘𝑍 → (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))))
2928ralimdv2 3108 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∀𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
3029reximia 3155 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∃𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
3130ralimi 3099 . . . 4 (∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
3210, 31syl 17 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
336, 7, 20, 32caurcvgr 14703 . 2 (𝜑𝐹𝑟 (lim sup‘𝐹))
3414a1d 25 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ))
3534rexlimiv 3174 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ)
3635rexlimivw 3176 . . . 4 (∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ)
3712, 36syl 17 . . 3 (𝜑𝑀 ∈ ℤ)
38 ax-resscn 10250 . . . 4 ℝ ⊆ ℂ
39 fss 6238 . . . 4 ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑍⟶ℂ)
407, 38, 39sylancl 580 . . 3 (𝜑𝐹:𝑍⟶ℂ)
411, 37, 40rlimclim 14576 . 2 (𝜑 → (𝐹𝑟 (lim sup‘𝐹) ↔ 𝐹 ⇝ (lim sup‘𝐹)))
4233, 41mpbid 223 1 (𝜑𝐹 ⇝ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  wss 3734  c0 4081   class class class wbr 4811  wf 6066  cfv 6070  (class class class)co 6846  supcsup 8557  cc 10191  cr 10192  1c1 10194  +∞cpnf 10329  *cxr 10331   < clt 10332  cle 10333  cmin 10524  cz 11628  cuz 11891  +crp 12033  abscabs 14273  lim supclsp 14500  cli 14514  𝑟 crli 14515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-er 7951  df-pm 8067  df-en 8165  df-dom 8166  df-sdom 8167  df-sup 8559  df-inf 8560  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-n0 11543  df-z 11629  df-uz 11892  df-rp 12034  df-ico 12388  df-fl 12806  df-seq 13014  df-exp 13073  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-limsup 14501  df-clim 14518  df-rlim 14519
This theorem is referenced by:  caurcvg2  14707  mbflimlem  23739  climlimsup  40654  ioodvbdlimc1lem1  40808
  Copyright terms: Public domain W3C validator