Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caurcvg | Structured version Visualization version GIF version |
Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by NM, 4-Apr-2005.) (Revised by AV, 12-Sep-2020.) |
Ref | Expression |
---|---|
caurcvg.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
caurcvg.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
caurcvg.4 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) |
Ref | Expression |
---|---|
caurcvg | ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caurcvg.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | uzssz 12532 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
3 | 1, 2 | eqsstri 3951 | . . . . 5 ⊢ 𝑍 ⊆ ℤ |
4 | zssre 12256 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
5 | 3, 4 | sstri 3926 | . . . 4 ⊢ 𝑍 ⊆ ℝ |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ⊆ ℝ) |
7 | caurcvg.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
8 | 1rp 12663 | . . . . . 6 ⊢ 1 ∈ ℝ+ | |
9 | 8 | ne0ii 4268 | . . . . 5 ⊢ ℝ+ ≠ ∅ |
10 | caurcvg.4 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) | |
11 | r19.2z 4422 | . . . . 5 ⊢ ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → ∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) | |
12 | 9, 10, 11 | sylancr 586 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) |
13 | eluzel2 12516 | . . . . . . . . 9 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
14 | 13, 1 | eleq2s 2857 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → 𝑀 ∈ ℤ) |
15 | 1 | uzsup 13511 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → sup(𝑍, ℝ*, < ) = +∞) |
17 | 16 | a1d 25 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)) |
18 | 17 | rexlimiv 3208 | . . . . 5 ⊢ (∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞) |
19 | 18 | rexlimivw 3210 | . . . 4 ⊢ (∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞) |
20 | 12, 19 | syl 17 | . . 3 ⊢ (𝜑 → sup(𝑍, ℝ*, < ) = +∞) |
21 | 3 | sseli 3913 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ) |
22 | 3 | sseli 3913 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
23 | eluz 12525 | . . . . . . . . . . . 12 ⊢ ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ≥‘𝑚) ↔ 𝑚 ≤ 𝑘)) | |
24 | 21, 22, 23 | syl2an 595 | . . . . . . . . . . 11 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑘 ∈ (ℤ≥‘𝑚) ↔ 𝑚 ≤ 𝑘)) |
25 | 24 | biimprd 247 | . . . . . . . . . 10 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑚 ≤ 𝑘 → 𝑘 ∈ (ℤ≥‘𝑚))) |
26 | 25 | expimpd 453 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ∧ 𝑚 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑚))) |
27 | 26 | imim1d 82 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ (ℤ≥‘𝑚) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → ((𝑘 ∈ 𝑍 ∧ 𝑚 ≤ 𝑘) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
28 | 27 | exp4a 431 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ (ℤ≥‘𝑚) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → (𝑘 ∈ 𝑍 → (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)))) |
29 | 28 | ralimdv2 3101 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
30 | 29 | reximia 3172 | . . . . 5 ⊢ (∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
31 | 30 | ralimi 3086 | . . . 4 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
32 | 10, 31 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
33 | 6, 7, 20, 32 | caurcvgr 15313 | . 2 ⊢ (𝜑 → 𝐹 ⇝𝑟 (lim sup‘𝐹)) |
34 | 14 | a1d 25 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → 𝑀 ∈ ℤ)) |
35 | 34 | rexlimiv 3208 | . . . . 5 ⊢ (∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → 𝑀 ∈ ℤ) |
36 | 35 | rexlimivw 3210 | . . . 4 ⊢ (∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → 𝑀 ∈ ℤ) |
37 | 12, 36 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
38 | ax-resscn 10859 | . . . 4 ⊢ ℝ ⊆ ℂ | |
39 | fss 6601 | . . . 4 ⊢ ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑍⟶ℂ) | |
40 | 7, 38, 39 | sylancl 585 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
41 | 1, 37, 40 | rlimclim 15183 | . 2 ⊢ (𝜑 → (𝐹 ⇝𝑟 (lim sup‘𝐹) ↔ 𝐹 ⇝ (lim sup‘𝐹))) |
42 | 33, 41 | mpbid 231 | 1 ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supcsup 9129 ℂcc 10800 ℝcr 10801 1c1 10803 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 ℤcz 12249 ℤ≥cuz 12511 ℝ+crp 12659 abscabs 14873 lim supclsp 15107 ⇝ cli 15121 ⇝𝑟 crli 15122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fl 13440 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 |
This theorem is referenced by: caurcvg2 15317 mbflimlem 24736 climlimsup 43191 ioodvbdlimc1lem1 43362 |
Copyright terms: Public domain | W3C validator |