MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg Structured version   Visualization version   GIF version

Theorem caurcvg 15581
Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by NM, 4-Apr-2005.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvg.1 𝑍 = (ℤ𝑀)
caurcvg.3 (𝜑𝐹:𝑍⟶ℝ)
caurcvg.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
Assertion
Ref Expression
caurcvg (𝜑𝐹 ⇝ (lim sup‘𝐹))
Distinct variable groups:   𝑘,𝑚,𝑥,𝐹   𝑚,𝑀,𝑥   𝜑,𝑘,𝑚,𝑥   𝑘,𝑍,𝑚,𝑥
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem caurcvg
StepHypRef Expression
1 caurcvg.1 . . . . . 6 𝑍 = (ℤ𝑀)
2 uzssz 12750 . . . . . 6 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3981 . . . . 5 𝑍 ⊆ ℤ
4 zssre 12472 . . . . 5 ℤ ⊆ ℝ
53, 4sstri 3944 . . . 4 𝑍 ⊆ ℝ
65a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
7 caurcvg.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
8 1rp 12891 . . . . . 6 1 ∈ ℝ+
98ne0ii 4294 . . . . 5 + ≠ ∅
10 caurcvg.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
11 r19.2z 4445 . . . . 5 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
129, 10, 11sylancr 587 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
13 eluzel2 12734 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1413, 1eleq2s 2849 . . . . . . . 8 (𝑚𝑍𝑀 ∈ ℤ)
151uzsup 13764 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1614, 15syl 17 . . . . . . 7 (𝑚𝑍 → sup(𝑍, ℝ*, < ) = +∞)
1716a1d 25 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞))
1817rexlimiv 3126 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)
1918rexlimivw 3129 . . . 4 (∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)
2012, 19syl 17 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
213sseli 3930 . . . . . . . . . . . 12 (𝑚𝑍𝑚 ∈ ℤ)
223sseli 3930 . . . . . . . . . . . 12 (𝑘𝑍𝑘 ∈ ℤ)
23 eluz 12743 . . . . . . . . . . . 12 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑚) ↔ 𝑚𝑘))
2421, 22, 23syl2an 596 . . . . . . . . . . 11 ((𝑚𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑚) ↔ 𝑚𝑘))
2524biimprd 248 . . . . . . . . . 10 ((𝑚𝑍𝑘𝑍) → (𝑚𝑘𝑘 ∈ (ℤ𝑚)))
2625expimpd 453 . . . . . . . . 9 (𝑚𝑍 → ((𝑘𝑍𝑚𝑘) → 𝑘 ∈ (ℤ𝑚)))
2726imim1d 82 . . . . . . . 8 (𝑚𝑍 → ((𝑘 ∈ (ℤ𝑚) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ((𝑘𝑍𝑚𝑘) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2827exp4a 431 . . . . . . 7 (𝑚𝑍 → ((𝑘 ∈ (ℤ𝑚) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → (𝑘𝑍 → (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))))
2928ralimdv2 3141 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∀𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
3029reximia 3067 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∃𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
3130ralimi 3069 . . . 4 (∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
3210, 31syl 17 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
336, 7, 20, 32caurcvgr 15578 . 2 (𝜑𝐹𝑟 (lim sup‘𝐹))
3414a1d 25 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ))
3534rexlimiv 3126 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ)
3635rexlimivw 3129 . . . 4 (∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ)
3712, 36syl 17 . . 3 (𝜑𝑀 ∈ ℤ)
38 ax-resscn 11060 . . . 4 ℝ ⊆ ℂ
39 fss 6667 . . . 4 ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑍⟶ℂ)
407, 38, 39sylancl 586 . . 3 (𝜑𝐹:𝑍⟶ℂ)
411, 37, 40rlimclim 15450 . 2 (𝜑 → (𝐹𝑟 (lim sup‘𝐹) ↔ 𝐹 ⇝ (lim sup‘𝐹)))
4233, 41mpbid 232 1 (𝜑𝐹 ⇝ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  wss 3902  c0 4283   class class class wbr 5091  wf 6477  cfv 6481  (class class class)co 7346  supcsup 9324  cc 11001  cr 11002  1c1 11004  +∞cpnf 11140  *cxr 11142   < clt 11143  cle 11144  cmin 11341  cz 12465  cuz 12729  +crp 12887  abscabs 15138  lim supclsp 15374  cli 15388  𝑟 crli 15389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-ico 13248  df-fl 13693  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393
This theorem is referenced by:  caurcvg2  15582  mbflimlem  25593  climlimsup  45797  ioodvbdlimc1lem1  45968
  Copyright terms: Public domain W3C validator