| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caurcvg | Structured version Visualization version GIF version | ||
| Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by NM, 4-Apr-2005.) (Revised by AV, 12-Sep-2020.) |
| Ref | Expression |
|---|---|
| caurcvg.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| caurcvg.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| caurcvg.4 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) |
| Ref | Expression |
|---|---|
| caurcvg | ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caurcvg.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | uzssz 12759 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 3 | 1, 2 | eqsstri 3977 | . . . . 5 ⊢ 𝑍 ⊆ ℤ |
| 4 | zssre 12482 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
| 5 | 3, 4 | sstri 3940 | . . . 4 ⊢ 𝑍 ⊆ ℝ |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ⊆ ℝ) |
| 7 | caurcvg.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 8 | 1rp 12896 | . . . . . 6 ⊢ 1 ∈ ℝ+ | |
| 9 | 8 | ne0ii 4293 | . . . . 5 ⊢ ℝ+ ≠ ∅ |
| 10 | caurcvg.4 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) | |
| 11 | r19.2z 4444 | . . . . 5 ⊢ ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → ∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) | |
| 12 | 9, 10, 11 | sylancr 587 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) |
| 13 | eluzel2 12743 | . . . . . . . . 9 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 14 | 13, 1 | eleq2s 2851 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → 𝑀 ∈ ℤ) |
| 15 | 1 | uzsup 13769 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → sup(𝑍, ℝ*, < ) = +∞) |
| 17 | 16 | a1d 25 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)) |
| 18 | 17 | rexlimiv 3127 | . . . . 5 ⊢ (∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞) |
| 19 | 18 | rexlimivw 3130 | . . . 4 ⊢ (∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞) |
| 20 | 12, 19 | syl 17 | . . 3 ⊢ (𝜑 → sup(𝑍, ℝ*, < ) = +∞) |
| 21 | 3 | sseli 3926 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ) |
| 22 | 3 | sseli 3926 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 23 | eluz 12752 | . . . . . . . . . . . 12 ⊢ ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ≥‘𝑚) ↔ 𝑚 ≤ 𝑘)) | |
| 24 | 21, 22, 23 | syl2an 596 | . . . . . . . . . . 11 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑘 ∈ (ℤ≥‘𝑚) ↔ 𝑚 ≤ 𝑘)) |
| 25 | 24 | biimprd 248 | . . . . . . . . . 10 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑚 ≤ 𝑘 → 𝑘 ∈ (ℤ≥‘𝑚))) |
| 26 | 25 | expimpd 453 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ∧ 𝑚 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑚))) |
| 27 | 26 | imim1d 82 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ (ℤ≥‘𝑚) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → ((𝑘 ∈ 𝑍 ∧ 𝑚 ≤ 𝑘) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
| 28 | 27 | exp4a 431 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ (ℤ≥‘𝑚) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → (𝑘 ∈ 𝑍 → (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)))) |
| 29 | 28 | ralimdv2 3142 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
| 30 | 29 | reximia 3068 | . . . . 5 ⊢ (∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
| 31 | 30 | ralimi 3070 | . . . 4 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
| 32 | 10, 31 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
| 33 | 6, 7, 20, 32 | caurcvgr 15583 | . 2 ⊢ (𝜑 → 𝐹 ⇝𝑟 (lim sup‘𝐹)) |
| 34 | 14 | a1d 25 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → 𝑀 ∈ ℤ)) |
| 35 | 34 | rexlimiv 3127 | . . . . 5 ⊢ (∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → 𝑀 ∈ ℤ) |
| 36 | 35 | rexlimivw 3130 | . . . 4 ⊢ (∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → 𝑀 ∈ ℤ) |
| 37 | 12, 36 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 38 | ax-resscn 11070 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 39 | fss 6672 | . . . 4 ⊢ ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑍⟶ℂ) | |
| 40 | 7, 38, 39 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
| 41 | 1, 37, 40 | rlimclim 15455 | . 2 ⊢ (𝜑 → (𝐹 ⇝𝑟 (lim sup‘𝐹) ↔ 𝐹 ⇝ (lim sup‘𝐹))) |
| 42 | 33, 41 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 ∅c0 4282 class class class wbr 5093 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 supcsup 9331 ℂcc 11011 ℝcr 11012 1c1 11014 +∞cpnf 11150 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 − cmin 11351 ℤcz 12475 ℤ≥cuz 12738 ℝ+crp 12892 abscabs 15143 lim supclsp 15379 ⇝ cli 15393 ⇝𝑟 crli 15394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-ico 13253 df-fl 13698 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 |
| This theorem is referenced by: caurcvg2 15587 mbflimlem 25596 climlimsup 45882 ioodvbdlimc1lem1 46053 |
| Copyright terms: Public domain | W3C validator |