Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg Structured version   Visualization version   GIF version

Theorem caurcvg 15026
 Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by NM, 4-Apr-2005.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvg.1 𝑍 = (ℤ𝑀)
caurcvg.3 (𝜑𝐹:𝑍⟶ℝ)
caurcvg.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
Assertion
Ref Expression
caurcvg (𝜑𝐹 ⇝ (lim sup‘𝐹))
Distinct variable groups:   𝑘,𝑚,𝑥,𝐹   𝑚,𝑀,𝑥   𝜑,𝑘,𝑚,𝑥   𝑘,𝑍,𝑚,𝑥
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem caurcvg
StepHypRef Expression
1 caurcvg.1 . . . . . 6 𝑍 = (ℤ𝑀)
2 uzssz 12256 . . . . . 6 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 4004 . . . . 5 𝑍 ⊆ ℤ
4 zssre 11980 . . . . 5 ℤ ⊆ ℝ
53, 4sstri 3979 . . . 4 𝑍 ⊆ ℝ
65a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
7 caurcvg.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
8 1rp 12386 . . . . . 6 1 ∈ ℝ+
98ne0ii 4306 . . . . 5 + ≠ ∅
10 caurcvg.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
11 r19.2z 4442 . . . . 5 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
129, 10, 11sylancr 587 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
13 eluzel2 12240 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1413, 1eleq2s 2935 . . . . . . . 8 (𝑚𝑍𝑀 ∈ ℤ)
151uzsup 13224 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1614, 15syl 17 . . . . . . 7 (𝑚𝑍 → sup(𝑍, ℝ*, < ) = +∞)
1716a1d 25 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞))
1817rexlimiv 3284 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)
1918rexlimivw 3286 . . . 4 (∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)
2012, 19syl 17 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
213sseli 3966 . . . . . . . . . . . 12 (𝑚𝑍𝑚 ∈ ℤ)
223sseli 3966 . . . . . . . . . . . 12 (𝑘𝑍𝑘 ∈ ℤ)
23 eluz 12249 . . . . . . . . . . . 12 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑚) ↔ 𝑚𝑘))
2421, 22, 23syl2an 595 . . . . . . . . . . 11 ((𝑚𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑚) ↔ 𝑚𝑘))
2524biimprd 249 . . . . . . . . . 10 ((𝑚𝑍𝑘𝑍) → (𝑚𝑘𝑘 ∈ (ℤ𝑚)))
2625expimpd 454 . . . . . . . . 9 (𝑚𝑍 → ((𝑘𝑍𝑚𝑘) → 𝑘 ∈ (ℤ𝑚)))
2726imim1d 82 . . . . . . . 8 (𝑚𝑍 → ((𝑘 ∈ (ℤ𝑚) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ((𝑘𝑍𝑚𝑘) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2827exp4a 432 . . . . . . 7 (𝑚𝑍 → ((𝑘 ∈ (ℤ𝑚) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → (𝑘𝑍 → (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))))
2928ralimdv2 3180 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∀𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
3029reximia 3246 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∃𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
3130ralimi 3164 . . . 4 (∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
3210, 31syl 17 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
336, 7, 20, 32caurcvgr 15023 . 2 (𝜑𝐹𝑟 (lim sup‘𝐹))
3414a1d 25 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ))
3534rexlimiv 3284 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ)
3635rexlimivw 3286 . . . 4 (∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ)
3712, 36syl 17 . . 3 (𝜑𝑀 ∈ ℤ)
38 ax-resscn 10586 . . . 4 ℝ ⊆ ℂ
39 fss 6523 . . . 4 ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑍⟶ℂ)
407, 38, 39sylancl 586 . . 3 (𝜑𝐹:𝑍⟶ℂ)
411, 37, 40rlimclim 14896 . 2 (𝜑 → (𝐹𝑟 (lim sup‘𝐹) ↔ 𝐹 ⇝ (lim sup‘𝐹)))
4233, 41mpbid 233 1 (𝜑𝐹 ⇝ (lim sup‘𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530   ∈ wcel 2107   ≠ wne 3020  ∀wral 3142  ∃wrex 3143   ⊆ wss 3939  ∅c0 4294   class class class wbr 5062  ⟶wf 6347  ‘cfv 6351  (class class class)co 7151  supcsup 8896  ℂcc 10527  ℝcr 10528  1c1 10530  +∞cpnf 10664  ℝ*cxr 10666   < clt 10667   ≤ cle 10668   − cmin 10862  ℤcz 11973  ℤ≥cuz 12235  ℝ+crp 12382  abscabs 14586  lim supclsp 14820   ⇝ cli 14834   ⇝𝑟 crli 14835 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-ico 12737  df-fl 13155  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839 This theorem is referenced by:  caurcvg2  15027  mbflimlem  24185  climlimsup  41908  ioodvbdlimc1lem1  42083
 Copyright terms: Public domain W3C validator