| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caurcvg | Structured version Visualization version GIF version | ||
| Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by NM, 4-Apr-2005.) (Revised by AV, 12-Sep-2020.) |
| Ref | Expression |
|---|---|
| caurcvg.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| caurcvg.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| caurcvg.4 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) |
| Ref | Expression |
|---|---|
| caurcvg | ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caurcvg.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | uzssz 12899 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 3 | 1, 2 | eqsstri 4030 | . . . . 5 ⊢ 𝑍 ⊆ ℤ |
| 4 | zssre 12620 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
| 5 | 3, 4 | sstri 3993 | . . . 4 ⊢ 𝑍 ⊆ ℝ |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ⊆ ℝ) |
| 7 | caurcvg.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 8 | 1rp 13038 | . . . . . 6 ⊢ 1 ∈ ℝ+ | |
| 9 | 8 | ne0ii 4344 | . . . . 5 ⊢ ℝ+ ≠ ∅ |
| 10 | caurcvg.4 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) | |
| 11 | r19.2z 4495 | . . . . 5 ⊢ ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → ∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) | |
| 12 | 9, 10, 11 | sylancr 587 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) |
| 13 | eluzel2 12883 | . . . . . . . . 9 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 14 | 13, 1 | eleq2s 2859 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → 𝑀 ∈ ℤ) |
| 15 | 1 | uzsup 13903 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → sup(𝑍, ℝ*, < ) = +∞) |
| 17 | 16 | a1d 25 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)) |
| 18 | 17 | rexlimiv 3148 | . . . . 5 ⊢ (∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞) |
| 19 | 18 | rexlimivw 3151 | . . . 4 ⊢ (∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞) |
| 20 | 12, 19 | syl 17 | . . 3 ⊢ (𝜑 → sup(𝑍, ℝ*, < ) = +∞) |
| 21 | 3 | sseli 3979 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ) |
| 22 | 3 | sseli 3979 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 23 | eluz 12892 | . . . . . . . . . . . 12 ⊢ ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ≥‘𝑚) ↔ 𝑚 ≤ 𝑘)) | |
| 24 | 21, 22, 23 | syl2an 596 | . . . . . . . . . . 11 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑘 ∈ (ℤ≥‘𝑚) ↔ 𝑚 ≤ 𝑘)) |
| 25 | 24 | biimprd 248 | . . . . . . . . . 10 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑚 ≤ 𝑘 → 𝑘 ∈ (ℤ≥‘𝑚))) |
| 26 | 25 | expimpd 453 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ∧ 𝑚 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑚))) |
| 27 | 26 | imim1d 82 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ (ℤ≥‘𝑚) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → ((𝑘 ∈ 𝑍 ∧ 𝑚 ≤ 𝑘) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
| 28 | 27 | exp4a 431 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ (ℤ≥‘𝑚) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → (𝑘 ∈ 𝑍 → (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)))) |
| 29 | 28 | ralimdv2 3163 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
| 30 | 29 | reximia 3081 | . . . . 5 ⊢ (∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
| 31 | 30 | ralimi 3083 | . . . 4 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
| 32 | 10, 31 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
| 33 | 6, 7, 20, 32 | caurcvgr 15710 | . 2 ⊢ (𝜑 → 𝐹 ⇝𝑟 (lim sup‘𝐹)) |
| 34 | 14 | a1d 25 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → 𝑀 ∈ ℤ)) |
| 35 | 34 | rexlimiv 3148 | . . . . 5 ⊢ (∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → 𝑀 ∈ ℤ) |
| 36 | 35 | rexlimivw 3151 | . . . 4 ⊢ (∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → 𝑀 ∈ ℤ) |
| 37 | 12, 36 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 38 | ax-resscn 11212 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 39 | fss 6752 | . . . 4 ⊢ ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑍⟶ℂ) | |
| 40 | 7, 38, 39 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
| 41 | 1, 37, 40 | rlimclim 15582 | . 2 ⊢ (𝜑 → (𝐹 ⇝𝑟 (lim sup‘𝐹) ↔ 𝐹 ⇝ (lim sup‘𝐹))) |
| 42 | 33, 41 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 ∅c0 4333 class class class wbr 5143 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 supcsup 9480 ℂcc 11153 ℝcr 11154 1c1 11156 +∞cpnf 11292 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 − cmin 11492 ℤcz 12613 ℤ≥cuz 12878 ℝ+crp 13034 abscabs 15273 lim supclsp 15506 ⇝ cli 15520 ⇝𝑟 crli 15521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-fl 13832 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 |
| This theorem is referenced by: caurcvg2 15714 mbflimlem 25702 climlimsup 45775 ioodvbdlimc1lem1 45946 |
| Copyright terms: Public domain | W3C validator |