| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caurcvg | Structured version Visualization version GIF version | ||
| Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by NM, 4-Apr-2005.) (Revised by AV, 12-Sep-2020.) |
| Ref | Expression |
|---|---|
| caurcvg.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| caurcvg.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| caurcvg.4 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) |
| Ref | Expression |
|---|---|
| caurcvg | ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caurcvg.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | uzssz 12814 | . . . . . 6 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 3 | 1, 2 | eqsstri 3993 | . . . . 5 ⊢ 𝑍 ⊆ ℤ |
| 4 | zssre 12536 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
| 5 | 3, 4 | sstri 3956 | . . . 4 ⊢ 𝑍 ⊆ ℝ |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ⊆ ℝ) |
| 7 | caurcvg.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 8 | 1rp 12955 | . . . . . 6 ⊢ 1 ∈ ℝ+ | |
| 9 | 8 | ne0ii 4307 | . . . . 5 ⊢ ℝ+ ≠ ∅ |
| 10 | caurcvg.4 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) | |
| 11 | r19.2z 4458 | . . . . 5 ⊢ ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → ∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) | |
| 12 | 9, 10, 11 | sylancr 587 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) |
| 13 | eluzel2 12798 | . . . . . . . . 9 ⊢ (𝑚 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 14 | 13, 1 | eleq2s 2846 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → 𝑀 ∈ ℤ) |
| 15 | 1 | uzsup 13825 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞) |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → sup(𝑍, ℝ*, < ) = +∞) |
| 17 | 16 | a1d 25 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)) |
| 18 | 17 | rexlimiv 3127 | . . . . 5 ⊢ (∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞) |
| 19 | 18 | rexlimivw 3130 | . . . 4 ⊢ (∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞) |
| 20 | 12, 19 | syl 17 | . . 3 ⊢ (𝜑 → sup(𝑍, ℝ*, < ) = +∞) |
| 21 | 3 | sseli 3942 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ) |
| 22 | 3 | sseli 3942 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 23 | eluz 12807 | . . . . . . . . . . . 12 ⊢ ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ≥‘𝑚) ↔ 𝑚 ≤ 𝑘)) | |
| 24 | 21, 22, 23 | syl2an 596 | . . . . . . . . . . 11 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑘 ∈ (ℤ≥‘𝑚) ↔ 𝑚 ≤ 𝑘)) |
| 25 | 24 | biimprd 248 | . . . . . . . . . 10 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → (𝑚 ≤ 𝑘 → 𝑘 ∈ (ℤ≥‘𝑚))) |
| 26 | 25 | expimpd 453 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ∧ 𝑚 ≤ 𝑘) → 𝑘 ∈ (ℤ≥‘𝑚))) |
| 27 | 26 | imim1d 82 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ (ℤ≥‘𝑚) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → ((𝑘 ∈ 𝑍 ∧ 𝑚 ≤ 𝑘) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
| 28 | 27 | exp4a 431 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → ((𝑘 ∈ (ℤ≥‘𝑚) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → (𝑘 ∈ 𝑍 → (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)))) |
| 29 | 28 | ralimdv2 3142 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
| 30 | 29 | reximia 3064 | . . . . 5 ⊢ (∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
| 31 | 30 | ralimi 3066 | . . . 4 ⊢ (∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
| 32 | 10, 31 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
| 33 | 6, 7, 20, 32 | caurcvgr 15640 | . 2 ⊢ (𝜑 → 𝐹 ⇝𝑟 (lim sup‘𝐹)) |
| 34 | 14 | a1d 25 | . . . . . 6 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → 𝑀 ∈ ℤ)) |
| 35 | 34 | rexlimiv 3127 | . . . . 5 ⊢ (∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → 𝑀 ∈ ℤ) |
| 36 | 35 | rexlimivw 3130 | . . . 4 ⊢ (∃𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 → 𝑀 ∈ ℤ) |
| 37 | 12, 36 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 38 | ax-resscn 11125 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 39 | fss 6704 | . . . 4 ⊢ ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑍⟶ℂ) | |
| 40 | 7, 38, 39 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
| 41 | 1, 37, 40 | rlimclim 15512 | . 2 ⊢ (𝜑 → (𝐹 ⇝𝑟 (lim sup‘𝐹) ↔ 𝐹 ⇝ (lim sup‘𝐹))) |
| 42 | 33, 41 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supcsup 9391 ℂcc 11066 ℝcr 11067 1c1 11069 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 − cmin 11405 ℤcz 12529 ℤ≥cuz 12793 ℝ+crp 12951 abscabs 15200 lim supclsp 15436 ⇝ cli 15450 ⇝𝑟 crli 15451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-fl 13754 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 |
| This theorem is referenced by: caurcvg2 15644 mbflimlem 25568 climlimsup 45758 ioodvbdlimc1lem1 45929 |
| Copyright terms: Public domain | W3C validator |