MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg Structured version   Visualization version   GIF version

Theorem caurcvg 15650
Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by NM, 4-Apr-2005.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvg.1 𝑍 = (ℤ𝑀)
caurcvg.3 (𝜑𝐹:𝑍⟶ℝ)
caurcvg.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
Assertion
Ref Expression
caurcvg (𝜑𝐹 ⇝ (lim sup‘𝐹))
Distinct variable groups:   𝑘,𝑚,𝑥,𝐹   𝑚,𝑀,𝑥   𝜑,𝑘,𝑚,𝑥   𝑘,𝑍,𝑚,𝑥
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem caurcvg
StepHypRef Expression
1 caurcvg.1 . . . . . 6 𝑍 = (ℤ𝑀)
2 uzssz 12821 . . . . . 6 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3996 . . . . 5 𝑍 ⊆ ℤ
4 zssre 12543 . . . . 5 ℤ ⊆ ℝ
53, 4sstri 3959 . . . 4 𝑍 ⊆ ℝ
65a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
7 caurcvg.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
8 1rp 12962 . . . . . 6 1 ∈ ℝ+
98ne0ii 4310 . . . . 5 + ≠ ∅
10 caurcvg.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
11 r19.2z 4461 . . . . 5 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
129, 10, 11sylancr 587 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
13 eluzel2 12805 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1413, 1eleq2s 2847 . . . . . . . 8 (𝑚𝑍𝑀 ∈ ℤ)
151uzsup 13832 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1614, 15syl 17 . . . . . . 7 (𝑚𝑍 → sup(𝑍, ℝ*, < ) = +∞)
1716a1d 25 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞))
1817rexlimiv 3128 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)
1918rexlimivw 3131 . . . 4 (∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)
2012, 19syl 17 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
213sseli 3945 . . . . . . . . . . . 12 (𝑚𝑍𝑚 ∈ ℤ)
223sseli 3945 . . . . . . . . . . . 12 (𝑘𝑍𝑘 ∈ ℤ)
23 eluz 12814 . . . . . . . . . . . 12 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑚) ↔ 𝑚𝑘))
2421, 22, 23syl2an 596 . . . . . . . . . . 11 ((𝑚𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑚) ↔ 𝑚𝑘))
2524biimprd 248 . . . . . . . . . 10 ((𝑚𝑍𝑘𝑍) → (𝑚𝑘𝑘 ∈ (ℤ𝑚)))
2625expimpd 453 . . . . . . . . 9 (𝑚𝑍 → ((𝑘𝑍𝑚𝑘) → 𝑘 ∈ (ℤ𝑚)))
2726imim1d 82 . . . . . . . 8 (𝑚𝑍 → ((𝑘 ∈ (ℤ𝑚) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ((𝑘𝑍𝑚𝑘) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2827exp4a 431 . . . . . . 7 (𝑚𝑍 → ((𝑘 ∈ (ℤ𝑚) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → (𝑘𝑍 → (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))))
2928ralimdv2 3143 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∀𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
3029reximia 3065 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∃𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
3130ralimi 3067 . . . 4 (∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
3210, 31syl 17 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
336, 7, 20, 32caurcvgr 15647 . 2 (𝜑𝐹𝑟 (lim sup‘𝐹))
3414a1d 25 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ))
3534rexlimiv 3128 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ)
3635rexlimivw 3131 . . . 4 (∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ)
3712, 36syl 17 . . 3 (𝜑𝑀 ∈ ℤ)
38 ax-resscn 11132 . . . 4 ℝ ⊆ ℂ
39 fss 6707 . . . 4 ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑍⟶ℂ)
407, 38, 39sylancl 586 . . 3 (𝜑𝐹:𝑍⟶ℂ)
411, 37, 40rlimclim 15519 . 2 (𝜑 → (𝐹𝑟 (lim sup‘𝐹) ↔ 𝐹 ⇝ (lim sup‘𝐹)))
4233, 41mpbid 232 1 (𝜑𝐹 ⇝ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917  c0 4299   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  supcsup 9398  cc 11073  cr 11074  1c1 11076  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cmin 11412  cz 12536  cuz 12800  +crp 12958  abscabs 15207  lim supclsp 15443  cli 15457  𝑟 crli 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462
This theorem is referenced by:  caurcvg2  15651  mbflimlem  25575  climlimsup  45765  ioodvbdlimc1lem1  45936
  Copyright terms: Public domain W3C validator